Metamath Proof Explorer


Theorem pimgtpnf2f

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +oo , is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021)

Ref Expression
Hypotheses pimgtpnf2f.1 𝑥 𝐹
pimgtpnf2f.2 𝑥 𝐴
pimgtpnf2f.3 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
Assertion pimgtpnf2f ( 𝜑 → { 𝑥𝐴 ∣ +∞ < ( 𝐹𝑥 ) } = ∅ )

Proof

Step Hyp Ref Expression
1 pimgtpnf2f.1 𝑥 𝐹
2 pimgtpnf2f.2 𝑥 𝐴
3 pimgtpnf2f.3 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
4 nfcv 𝑦 𝐴
5 nfv 𝑦 +∞ < ( 𝐹𝑥 )
6 nfcv 𝑥 +∞
7 nfcv 𝑥 <
8 nfcv 𝑥 𝑦
9 1 8 nffv 𝑥 ( 𝐹𝑦 )
10 6 7 9 nfbr 𝑥 +∞ < ( 𝐹𝑦 )
11 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
12 11 breq2d ( 𝑥 = 𝑦 → ( +∞ < ( 𝐹𝑥 ) ↔ +∞ < ( 𝐹𝑦 ) ) )
13 2 4 5 10 12 cbvrabw { 𝑥𝐴 ∣ +∞ < ( 𝐹𝑥 ) } = { 𝑦𝐴 ∣ +∞ < ( 𝐹𝑦 ) }
14 3 ffvelcdmda ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ ℝ )
15 14 rexrd ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ ℝ* )
16 15 pnfged ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ≤ +∞ )
17 pnfxr +∞ ∈ ℝ*
18 17 a1i ( ( 𝜑𝑦𝐴 ) → +∞ ∈ ℝ* )
19 15 18 xrlenltd ( ( 𝜑𝑦𝐴 ) → ( ( 𝐹𝑦 ) ≤ +∞ ↔ ¬ +∞ < ( 𝐹𝑦 ) ) )
20 16 19 mpbid ( ( 𝜑𝑦𝐴 ) → ¬ +∞ < ( 𝐹𝑦 ) )
21 20 ralrimiva ( 𝜑 → ∀ 𝑦𝐴 ¬ +∞ < ( 𝐹𝑦 ) )
22 rabeq0 ( { 𝑦𝐴 ∣ +∞ < ( 𝐹𝑦 ) } = ∅ ↔ ∀ 𝑦𝐴 ¬ +∞ < ( 𝐹𝑦 ) )
23 21 22 sylibr ( 𝜑 → { 𝑦𝐴 ∣ +∞ < ( 𝐹𝑦 ) } = ∅ )
24 13 23 eqtrid ( 𝜑 → { 𝑥𝐴 ∣ +∞ < ( 𝐹𝑥 ) } = ∅ )