| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pimgtpnf2f.1 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | pimgtpnf2f.2 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | pimgtpnf2f.3 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑦 +∞  <  ( 𝐹 ‘ 𝑥 ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥 +∞ | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 9 | 1 8 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) | 
						
							| 10 | 6 7 9 | nfbr | ⊢ Ⅎ 𝑥 +∞  <  ( 𝐹 ‘ 𝑦 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 12 | 11 | breq2d | ⊢ ( 𝑥  =  𝑦  →  ( +∞  <  ( 𝐹 ‘ 𝑥 )  ↔  +∞  <  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 13 | 2 4 5 10 12 | cbvrabw | ⊢ { 𝑥  ∈  𝐴  ∣  +∞  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑦  ∈  𝐴  ∣  +∞  <  ( 𝐹 ‘ 𝑦 ) } | 
						
							| 14 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 15 | 14 | rexrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 16 | 15 | pnfged | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  ≤  +∞ ) | 
						
							| 17 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  +∞  ∈  ℝ* ) | 
						
							| 19 | 15 18 | xrlenltd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑦 )  ≤  +∞  ↔  ¬  +∞  <  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 20 | 16 19 | mpbid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ¬  +∞  <  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 21 | 20 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐴 ¬  +∞  <  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 22 |  | rabeq0 | ⊢ ( { 𝑦  ∈  𝐴  ∣  +∞  <  ( 𝐹 ‘ 𝑦 ) }  =  ∅  ↔  ∀ 𝑦  ∈  𝐴 ¬  +∞  <  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 23 | 21 22 | sylibr | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐴  ∣  +∞  <  ( 𝐹 ‘ 𝑦 ) }  =  ∅ ) | 
						
							| 24 | 13 23 | eqtrid | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  +∞  <  ( 𝐹 ‘ 𝑥 ) }  =  ∅ ) |