| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimgtpnf2f.1 |
⊢ Ⅎ 𝑥 𝐹 |
| 2 |
|
pimgtpnf2f.2 |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
pimgtpnf2f.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 5 |
|
nfv |
⊢ Ⅎ 𝑦 +∞ < ( 𝐹 ‘ 𝑥 ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 +∞ |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 9 |
1 8
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 10 |
6 7 9
|
nfbr |
⊢ Ⅎ 𝑥 +∞ < ( 𝐹 ‘ 𝑦 ) |
| 11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 12 |
11
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( +∞ < ( 𝐹 ‘ 𝑥 ) ↔ +∞ < ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 |
2 4 5 10 12
|
cbvrabw |
⊢ { 𝑥 ∈ 𝐴 ∣ +∞ < ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∈ 𝐴 ∣ +∞ < ( 𝐹 ‘ 𝑦 ) } |
| 14 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 15 |
14
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
| 16 |
15
|
pnfged |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ≤ +∞ ) |
| 17 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 18 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → +∞ ∈ ℝ* ) |
| 19 |
15 18
|
xrlenltd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ≤ +∞ ↔ ¬ +∞ < ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 |
16 19
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ¬ +∞ < ( 𝐹 ‘ 𝑦 ) ) |
| 21 |
20
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ¬ +∞ < ( 𝐹 ‘ 𝑦 ) ) |
| 22 |
|
rabeq0 |
⊢ ( { 𝑦 ∈ 𝐴 ∣ +∞ < ( 𝐹 ‘ 𝑦 ) } = ∅ ↔ ∀ 𝑦 ∈ 𝐴 ¬ +∞ < ( 𝐹 ‘ 𝑦 ) ) |
| 23 |
21 22
|
sylibr |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐴 ∣ +∞ < ( 𝐹 ‘ 𝑦 ) } = ∅ ) |
| 24 |
13 23
|
eqtrid |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ +∞ < ( 𝐹 ‘ 𝑥 ) } = ∅ ) |