Metamath Proof Explorer


Theorem pimgtpnf2f

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +oo , is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021)

Ref Expression
Hypotheses pimgtpnf2f.1 _ x F
pimgtpnf2f.2 _ x A
pimgtpnf2f.3 φ F : A
Assertion pimgtpnf2f φ x A | +∞ < F x =

Proof

Step Hyp Ref Expression
1 pimgtpnf2f.1 _ x F
2 pimgtpnf2f.2 _ x A
3 pimgtpnf2f.3 φ F : A
4 nfcv _ y A
5 nfv y +∞ < F x
6 nfcv _ x +∞
7 nfcv _ x <
8 nfcv _ x y
9 1 8 nffv _ x F y
10 6 7 9 nfbr x +∞ < F y
11 fveq2 x = y F x = F y
12 11 breq2d x = y +∞ < F x +∞ < F y
13 2 4 5 10 12 cbvrabw x A | +∞ < F x = y A | +∞ < F y
14 3 ffvelcdmda φ y A F y
15 14 rexrd φ y A F y *
16 15 pnfged φ y A F y +∞
17 pnfxr +∞ *
18 17 a1i φ y A +∞ *
19 15 18 xrlenltd φ y A F y +∞ ¬ +∞ < F y
20 16 19 mpbid φ y A ¬ +∞ < F y
21 20 ralrimiva φ y A ¬ +∞ < F y
22 rabeq0 y A | +∞ < F y = y A ¬ +∞ < F y
23 21 22 sylibr φ y A | +∞ < F y =
24 13 23 eqtrid φ x A | +∞ < F x =