Metamath Proof Explorer


Theorem pimgtpnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +oo , is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimgtpnf2.1 _ x F
pimgtpnf2.2 φ F : A
Assertion pimgtpnf2 φ x A | +∞ < F x =

Proof

Step Hyp Ref Expression
1 pimgtpnf2.1 _ x F
2 pimgtpnf2.2 φ F : A
3 nfcv _ x A
4 1 3 2 pimgtpnf2f φ x A | +∞ < F x =