Metamath Proof Explorer


Theorem pimgtpnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +oo , is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimgtpnf2.1
|- F/_ x F
pimgtpnf2.2
|- ( ph -> F : A --> RR )
Assertion pimgtpnf2
|- ( ph -> { x e. A | +oo < ( F ` x ) } = (/) )

Proof

Step Hyp Ref Expression
1 pimgtpnf2.1
 |-  F/_ x F
2 pimgtpnf2.2
 |-  ( ph -> F : A --> RR )
3 nfcv
 |-  F/_ x A
4 1 3 2 pimgtpnf2f
 |-  ( ph -> { x e. A | +oo < ( F ` x ) } = (/) )