Metamath Proof Explorer


Theorem pimgtpnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +oo , is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimgtpnf2.1 𝑥 𝐹
pimgtpnf2.2 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
Assertion pimgtpnf2 ( 𝜑 → { 𝑥𝐴 ∣ +∞ < ( 𝐹𝑥 ) } = ∅ )

Proof

Step Hyp Ref Expression
1 pimgtpnf2.1 𝑥 𝐹
2 pimgtpnf2.2 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
3 nfcv 𝑥 𝐴
4 1 3 2 pimgtpnf2f ( 𝜑 → { 𝑥𝐴 ∣ +∞ < ( 𝐹𝑥 ) } = ∅ )