Description: If all the preimages of left-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iv) implies (i) in Proposition 121B of Fremlin1 p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | salpreimagelt.x | |
|
salpreimagelt.a | |
||
salpreimagelt.s | |
||
salpreimagelt.u | |
||
salpreimagelt.b | |
||
salpreimagelt.p | |
||
salpreimagelt.c | |
||
Assertion | salpreimagelt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimagelt.x | |
|
2 | salpreimagelt.a | |
|
3 | salpreimagelt.s | |
|
4 | salpreimagelt.u | |
|
5 | salpreimagelt.b | |
|
6 | salpreimagelt.p | |
|
7 | salpreimagelt.c | |
|
8 | 4 | eqcomi | |
9 | 8 | a1i | |
10 | 9 | difeq1d | |
11 | 7 | rexrd | |
12 | 1 5 11 | preimagelt | |
13 | 10 12 | eqtr2d | |
14 | 7 | ancli | |
15 | nfcv | |
|
16 | 15 | nfel1 | |
17 | 2 16 | nfan | |
18 | nfv | |
|
19 | 17 18 | nfim | |
20 | eleq1 | |
|
21 | 20 | anbi2d | |
22 | breq1 | |
|
23 | 22 | rabbidv | |
24 | 23 | eleq1d | |
25 | 21 24 | imbi12d | |
26 | 19 25 6 | vtoclg1f | |
27 | 7 14 26 | sylc | |
28 | 3 27 | saldifcld | |
29 | 13 28 | eqeltrd | |