Metamath Proof Explorer


Theorem pimltpnf

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimltpnf.1 x φ
pimltpnf.2 φ x A B
Assertion pimltpnf φ x A | B < +∞ = A

Proof

Step Hyp Ref Expression
1 pimltpnf.1 x φ
2 pimltpnf.2 φ x A B
3 nfcv _ x A
4 1 3 2 pimltpnff φ x A | B < +∞ = A