Metamath Proof Explorer


Theorem pimltpnf

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimltpnf.1 x φ
pimltpnf.2 φ x A B
Assertion pimltpnf φ x A | B < +∞ = A

Proof

Step Hyp Ref Expression
1 pimltpnf.1 x φ
2 pimltpnf.2 φ x A B
3 ssrab2 x A | B < +∞ A
4 3 a1i φ x A | B < +∞ A
5 simpr φ x A x A
6 ltpnf B B < +∞
7 2 6 syl φ x A B < +∞
8 5 7 jca φ x A x A B < +∞
9 rabid x x A | B < +∞ x A B < +∞
10 8 9 sylibr φ x A x x A | B < +∞
11 10 ex φ x A x x A | B < +∞
12 1 11 ralrimi φ x A x x A | B < +∞
13 nfcv _ x A
14 nfrab1 _ x x A | B < +∞
15 13 14 dfss3f A x A | B < +∞ x A x x A | B < +∞
16 12 15 sylibr φ A x A | B < +∞
17 4 16 eqssd φ x A | B < +∞ = A