Metamath Proof Explorer


Theorem pimltpnf2f

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltpnf2f.1 𝑥 𝐹
pimltpnf2f.2 𝑥 𝐴
pimltpnf2f.3 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
Assertion pimltpnf2f ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < +∞ } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimltpnf2f.1 𝑥 𝐹
2 pimltpnf2f.2 𝑥 𝐴
3 pimltpnf2f.3 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
4 nfcv 𝑦 𝐴
5 nfv 𝑦 ( 𝐹𝑥 ) < +∞
6 nfcv 𝑥 𝑦
7 1 6 nffv 𝑥 ( 𝐹𝑦 )
8 nfcv 𝑥 <
9 nfcv 𝑥 +∞
10 7 8 9 nfbr 𝑥 ( 𝐹𝑦 ) < +∞
11 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
12 11 breq1d ( 𝑥 = 𝑦 → ( ( 𝐹𝑥 ) < +∞ ↔ ( 𝐹𝑦 ) < +∞ ) )
13 2 4 5 10 12 cbvrabw { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < +∞ } = { 𝑦𝐴 ∣ ( 𝐹𝑦 ) < +∞ }
14 nfv 𝑦 𝜑
15 3 ffvelcdmda ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ ℝ )
16 14 15 pimltpnf ( 𝜑 → { 𝑦𝐴 ∣ ( 𝐹𝑦 ) < +∞ } = 𝐴 )
17 13 16 eqtrid ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < +∞ } = 𝐴 )