Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measurable functions
pimltpnf2f
Metamath Proof Explorer
Description: Given a real-valued function, the preimage of an open interval,
unbounded below, with upper bound +oo , is the whole domain.
(Contributed by Glauco Siliprandi , 15-Dec-2024)
Ref
Expression
Hypotheses
pimltpnf2f.1
⊢ Ⅎ 𝑥 𝐹
pimltpnf2f.2
⊢ Ⅎ 𝑥 𝐴
pimltpnf2f.3
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ )
Assertion
pimltpnf2f
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } = 𝐴 )
Proof
Step
Hyp
Ref
Expression
1
pimltpnf2f.1
⊢ Ⅎ 𝑥 𝐹
2
pimltpnf2f.2
⊢ Ⅎ 𝑥 𝐴
3
pimltpnf2f.3
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ )
4
nfcv
⊢ Ⅎ 𝑦 𝐴
5
nfv
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) < +∞
6
nfcv
⊢ Ⅎ 𝑥 𝑦
7
1 6
nffv
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 )
8
nfcv
⊢ Ⅎ 𝑥 <
9
nfcv
⊢ Ⅎ 𝑥 +∞
10
7 8 9
nfbr
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) < +∞
11
fveq2
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) )
12
11
breq1d
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) < +∞ ↔ ( 𝐹 ‘ 𝑦 ) < +∞ ) )
13
2 4 5 10 12
cbvrabw
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } = { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) < +∞ }
14
nfv
⊢ Ⅎ 𝑦 𝜑
15
3
ffvelcdmda
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ )
16
14 15
pimltpnf
⊢ ( 𝜑 → { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) < +∞ } = 𝐴 )
17
13 16
eqtrid
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } = 𝐴 )