Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Glauco Siliprandi Basic measure theory Measurable functions pimltpnf2f  
				
		 
		
			
		 
		Description:   Given a real-valued function, the preimage of an open interval,
       unbounded below, with upper bound +oo  , is the whole domain.
       (Contributed by Glauco Siliprandi , 15-Dec-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						pimltpnf2f.1 ⊢  Ⅎ  𝑥  𝐹   
					
						pimltpnf2f.2 ⊢  Ⅎ  𝑥  𝐴   
					
						pimltpnf2f.3 ⊢  ( 𝜑   →  𝐹  : 𝐴  ⟶ ℝ )  
				
					Assertion 
					pimltpnf2f ⊢   ( 𝜑   →  { 𝑥   ∈  𝐴   ∣  ( 𝐹  ‘ 𝑥  )  <  +∞ }  =  𝐴  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							pimltpnf2f.1 ⊢  Ⅎ  𝑥  𝐹   
						
							2 
								
							 
							pimltpnf2f.2 ⊢  Ⅎ  𝑥  𝐴   
						
							3 
								
							 
							pimltpnf2f.3 ⊢  ( 𝜑   →  𝐹  : 𝐴  ⟶ ℝ )  
						
							4 
								
							 
							nfcv ⊢  Ⅎ  𝑦  𝐴   
						
							5 
								
							 
							nfv ⊢  Ⅎ 𝑦  ( 𝐹  ‘ 𝑥  )  <  +∞  
						
							6 
								
							 
							nfcv ⊢  Ⅎ  𝑥  𝑦   
						
							7 
								1  6 
							 
							nffv ⊢  Ⅎ  𝑥  ( 𝐹  ‘ 𝑦  )  
						
							8 
								
							 
							nfcv ⊢  Ⅎ  𝑥   <   
						
							9 
								
							 
							nfcv ⊢  Ⅎ  𝑥  +∞  
						
							10 
								7  8  9 
							 
							nfbr ⊢  Ⅎ 𝑥  ( 𝐹  ‘ 𝑦  )  <  +∞  
						
							11 
								
							 
							fveq2 ⊢  ( 𝑥   =  𝑦   →  ( 𝐹  ‘ 𝑥  )  =  ( 𝐹  ‘ 𝑦  ) )  
						
							12 
								11 
							 
							breq1d ⊢  ( 𝑥   =  𝑦   →  ( ( 𝐹  ‘ 𝑥  )  <  +∞  ↔  ( 𝐹  ‘ 𝑦  )  <  +∞ ) )  
						
							13 
								2  4  5  10  12 
							 
							cbvrabw ⊢  { 𝑥   ∈  𝐴   ∣  ( 𝐹  ‘ 𝑥  )  <  +∞ }  =  { 𝑦   ∈  𝐴   ∣  ( 𝐹  ‘ 𝑦  )  <  +∞ }  
						
							14 
								
							 
							nfv ⊢  Ⅎ 𝑦  𝜑   
						
							15 
								3 
							 
							ffvelcdmda ⊢  ( ( 𝜑   ∧  𝑦   ∈  𝐴  )  →  ( 𝐹  ‘ 𝑦  )  ∈  ℝ )  
						
							16 
								14  15 
							 
							pimltpnf ⊢  ( 𝜑   →  { 𝑦   ∈  𝐴   ∣  ( 𝐹  ‘ 𝑦  )  <  +∞ }  =  𝐴  )  
						
							17 
								13  16 
							 
							eqtrid ⊢  ( 𝜑   →  { 𝑥   ∈  𝐴   ∣  ( 𝐹  ‘ 𝑥  )  <  +∞ }  =  𝐴  )