| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preimaioomnf.1 |
|- ( ph -> F : A --> RR ) |
| 2 |
|
preimaioomnf.2 |
|- ( ph -> B e. RR* ) |
| 3 |
1
|
ffund |
|- ( ph -> Fun F ) |
| 4 |
1
|
frnd |
|- ( ph -> ran F C_ RR ) |
| 5 |
|
fimacnvinrn2 |
|- ( ( Fun F /\ ran F C_ RR ) -> ( `' F " ( -oo [,) B ) ) = ( `' F " ( ( -oo [,) B ) i^i RR ) ) ) |
| 6 |
3 4 5
|
syl2anc |
|- ( ph -> ( `' F " ( -oo [,) B ) ) = ( `' F " ( ( -oo [,) B ) i^i RR ) ) ) |
| 7 |
2
|
icomnfinre |
|- ( ph -> ( ( -oo [,) B ) i^i RR ) = ( -oo (,) B ) ) |
| 8 |
7
|
imaeq2d |
|- ( ph -> ( `' F " ( ( -oo [,) B ) i^i RR ) ) = ( `' F " ( -oo (,) B ) ) ) |
| 9 |
6 8
|
eqtr2d |
|- ( ph -> ( `' F " ( -oo (,) B ) ) = ( `' F " ( -oo [,) B ) ) ) |
| 10 |
1
|
frexr |
|- ( ph -> F : A --> RR* ) |
| 11 |
10 2
|
preimaicomnf |
|- ( ph -> ( `' F " ( -oo [,) B ) ) = { x e. A | ( F ` x ) < B } ) |
| 12 |
9 11
|
eqtrd |
|- ( ph -> ( `' F " ( -oo (,) B ) ) = { x e. A | ( F ` x ) < B } ) |