| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icomnfinre.1 |
|- ( ph -> A e. RR* ) |
| 2 |
|
mnfxr |
|- -oo e. RR* |
| 3 |
2
|
a1i |
|- ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> -oo e. RR* ) |
| 4 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> A e. RR* ) |
| 5 |
|
elinel2 |
|- ( x e. ( ( -oo [,) A ) i^i RR ) -> x e. RR ) |
| 6 |
5
|
adantl |
|- ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> x e. RR ) |
| 7 |
6
|
mnfltd |
|- ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> -oo < x ) |
| 8 |
|
elinel1 |
|- ( x e. ( ( -oo [,) A ) i^i RR ) -> x e. ( -oo [,) A ) ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> x e. ( -oo [,) A ) ) |
| 10 |
3 4 9
|
icoltubd |
|- ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> x < A ) |
| 11 |
3 4 6 7 10
|
eliood |
|- ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> x e. ( -oo (,) A ) ) |
| 12 |
11
|
ssd |
|- ( ph -> ( ( -oo [,) A ) i^i RR ) C_ ( -oo (,) A ) ) |
| 13 |
|
ioossico |
|- ( -oo (,) A ) C_ ( -oo [,) A ) |
| 14 |
|
ioossre |
|- ( -oo (,) A ) C_ RR |
| 15 |
13 14
|
ssini |
|- ( -oo (,) A ) C_ ( ( -oo [,) A ) i^i RR ) |
| 16 |
15
|
a1i |
|- ( ph -> ( -oo (,) A ) C_ ( ( -oo [,) A ) i^i RR ) ) |
| 17 |
12 16
|
eqssd |
|- ( ph -> ( ( -oo [,) A ) i^i RR ) = ( -oo (,) A ) ) |