Metamath Proof Explorer


Theorem icomnfinre

Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis icomnfinre.1
|- ( ph -> A e. RR* )
Assertion icomnfinre
|- ( ph -> ( ( -oo [,) A ) i^i RR ) = ( -oo (,) A ) )

Proof

Step Hyp Ref Expression
1 icomnfinre.1
 |-  ( ph -> A e. RR* )
2 mnfxr
 |-  -oo e. RR*
3 2 a1i
 |-  ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> -oo e. RR* )
4 1 adantr
 |-  ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> A e. RR* )
5 elinel2
 |-  ( x e. ( ( -oo [,) A ) i^i RR ) -> x e. RR )
6 5 adantl
 |-  ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> x e. RR )
7 6 mnfltd
 |-  ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> -oo < x )
8 elinel1
 |-  ( x e. ( ( -oo [,) A ) i^i RR ) -> x e. ( -oo [,) A ) )
9 8 adantl
 |-  ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> x e. ( -oo [,) A ) )
10 3 4 9 icoltubd
 |-  ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> x < A )
11 3 4 6 7 10 eliood
 |-  ( ( ph /\ x e. ( ( -oo [,) A ) i^i RR ) ) -> x e. ( -oo (,) A ) )
12 11 ssd
 |-  ( ph -> ( ( -oo [,) A ) i^i RR ) C_ ( -oo (,) A ) )
13 ioossico
 |-  ( -oo (,) A ) C_ ( -oo [,) A )
14 ioossre
 |-  ( -oo (,) A ) C_ RR
15 13 14 ssini
 |-  ( -oo (,) A ) C_ ( ( -oo [,) A ) i^i RR )
16 15 a1i
 |-  ( ph -> ( -oo (,) A ) C_ ( ( -oo [,) A ) i^i RR ) )
17 12 16 eqssd
 |-  ( ph -> ( ( -oo [,) A ) i^i RR ) = ( -oo (,) A ) )