| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrlearg.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
0re |
|- 0 e. RR |
| 3 |
2
|
a1i |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> 0 e. RR ) |
| 4 |
|
simpr |
|- ( ( ph /\ -. A <_ 1 ) -> -. A <_ 1 ) |
| 5 |
|
1red |
|- ( ( ph /\ -. A <_ 1 ) -> 1 e. RR ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ -. A <_ 1 ) -> A e. RR ) |
| 7 |
5 6
|
ltnled |
|- ( ( ph /\ -. A <_ 1 ) -> ( 1 < A <-> -. A <_ 1 ) ) |
| 8 |
4 7
|
mpbird |
|- ( ( ph /\ -. A <_ 1 ) -> 1 < A ) |
| 9 |
|
1red |
|- ( ( ph /\ 1 < A ) -> 1 e. RR ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ 1 < A ) -> A e. RR ) |
| 11 |
2
|
a1i |
|- ( ( ph /\ 1 < A ) -> 0 e. RR ) |
| 12 |
|
0lt1 |
|- 0 < 1 |
| 13 |
12
|
a1i |
|- ( ( ph /\ 1 < A ) -> 0 < 1 ) |
| 14 |
|
simpr |
|- ( ( ph /\ 1 < A ) -> 1 < A ) |
| 15 |
11 9 10 13 14
|
lttrd |
|- ( ( ph /\ 1 < A ) -> 0 < A ) |
| 16 |
10 15
|
elrpd |
|- ( ( ph /\ 1 < A ) -> A e. RR+ ) |
| 17 |
9 10 16 14
|
ltmul2dd |
|- ( ( ph /\ 1 < A ) -> ( A x. 1 ) < ( A x. A ) ) |
| 18 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 19 |
18
|
mulridd |
|- ( ph -> ( A x. 1 ) = A ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ 1 < A ) -> ( A x. 1 ) = A ) |
| 21 |
18
|
sqvald |
|- ( ph -> ( A ^ 2 ) = ( A x. A ) ) |
| 22 |
21
|
eqcomd |
|- ( ph -> ( A x. A ) = ( A ^ 2 ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ 1 < A ) -> ( A x. A ) = ( A ^ 2 ) ) |
| 24 |
20 23
|
breq12d |
|- ( ( ph /\ 1 < A ) -> ( ( A x. 1 ) < ( A x. A ) <-> A < ( A ^ 2 ) ) ) |
| 25 |
17 24
|
mpbid |
|- ( ( ph /\ 1 < A ) -> A < ( A ^ 2 ) ) |
| 26 |
8 25
|
syldan |
|- ( ( ph /\ -. A <_ 1 ) -> A < ( A ^ 2 ) ) |
| 27 |
26
|
adantlr |
|- ( ( ( ph /\ ( A ^ 2 ) <_ A ) /\ -. A <_ 1 ) -> A < ( A ^ 2 ) ) |
| 28 |
|
simpr |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> ( A ^ 2 ) <_ A ) |
| 29 |
1
|
resqcld |
|- ( ph -> ( A ^ 2 ) e. RR ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> ( A ^ 2 ) e. RR ) |
| 31 |
1
|
adantr |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> A e. RR ) |
| 32 |
30 31
|
lenltd |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> ( ( A ^ 2 ) <_ A <-> -. A < ( A ^ 2 ) ) ) |
| 33 |
28 32
|
mpbid |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> -. A < ( A ^ 2 ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ ( A ^ 2 ) <_ A ) /\ -. A <_ 1 ) -> -. A < ( A ^ 2 ) ) |
| 35 |
27 34
|
condan |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> A <_ 1 ) |
| 36 |
|
1red |
|- ( ( ph /\ A <_ 1 ) -> 1 e. RR ) |
| 37 |
35 36
|
syldan |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> 1 e. RR ) |
| 38 |
31
|
sqge0d |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> 0 <_ ( A ^ 2 ) ) |
| 39 |
3 30 31 38 28
|
letrd |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> 0 <_ A ) |
| 40 |
3 37 31 39 35
|
eliccd |
|- ( ( ph /\ ( A ^ 2 ) <_ A ) -> A e. ( 0 [,] 1 ) ) |
| 41 |
40
|
ex |
|- ( ph -> ( ( A ^ 2 ) <_ A -> A e. ( 0 [,] 1 ) ) ) |
| 42 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 43 |
42
|
sseli |
|- ( A e. ( 0 [,] 1 ) -> A e. RR ) |
| 44 |
|
1red |
|- ( A e. ( 0 [,] 1 ) -> 1 e. RR ) |
| 45 |
|
0xr |
|- 0 e. RR* |
| 46 |
45
|
a1i |
|- ( A e. ( 0 [,] 1 ) -> 0 e. RR* ) |
| 47 |
44
|
rexrd |
|- ( A e. ( 0 [,] 1 ) -> 1 e. RR* ) |
| 48 |
|
id |
|- ( A e. ( 0 [,] 1 ) -> A e. ( 0 [,] 1 ) ) |
| 49 |
46 47 48
|
iccgelbd |
|- ( A e. ( 0 [,] 1 ) -> 0 <_ A ) |
| 50 |
46 47 48
|
iccleubd |
|- ( A e. ( 0 [,] 1 ) -> A <_ 1 ) |
| 51 |
43 44 43 49 50
|
lemul2ad |
|- ( A e. ( 0 [,] 1 ) -> ( A x. A ) <_ ( A x. 1 ) ) |
| 52 |
51
|
adantl |
|- ( ( ph /\ A e. ( 0 [,] 1 ) ) -> ( A x. A ) <_ ( A x. 1 ) ) |
| 53 |
22
|
adantr |
|- ( ( ph /\ A e. ( 0 [,] 1 ) ) -> ( A x. A ) = ( A ^ 2 ) ) |
| 54 |
19
|
adantr |
|- ( ( ph /\ A e. ( 0 [,] 1 ) ) -> ( A x. 1 ) = A ) |
| 55 |
53 54
|
breq12d |
|- ( ( ph /\ A e. ( 0 [,] 1 ) ) -> ( ( A x. A ) <_ ( A x. 1 ) <-> ( A ^ 2 ) <_ A ) ) |
| 56 |
52 55
|
mpbid |
|- ( ( ph /\ A e. ( 0 [,] 1 ) ) -> ( A ^ 2 ) <_ A ) |
| 57 |
56
|
ex |
|- ( ph -> ( A e. ( 0 [,] 1 ) -> ( A ^ 2 ) <_ A ) ) |
| 58 |
41 57
|
impbid |
|- ( ph -> ( ( A ^ 2 ) <_ A <-> A e. ( 0 [,] 1 ) ) ) |