| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrlearg.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
0re |
⊢ 0 ∈ ℝ |
| 3 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → 0 ∈ ℝ ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 1 ) → ¬ 𝐴 ≤ 1 ) |
| 5 |
|
1red |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 1 ) → 1 ∈ ℝ ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 1 ) → 𝐴 ∈ ℝ ) |
| 7 |
5 6
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 1 ) → ( 1 < 𝐴 ↔ ¬ 𝐴 ≤ 1 ) ) |
| 8 |
4 7
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 1 ) → 1 < 𝐴 ) |
| 9 |
|
1red |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 11 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) |
| 12 |
|
0lt1 |
⊢ 0 < 1 |
| 13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 0 < 1 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
| 15 |
11 9 10 13 14
|
lttrd |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
| 16 |
10 15
|
elrpd |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 17 |
9 10 16 14
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ( 𝐴 · 1 ) < ( 𝐴 · 𝐴 ) ) |
| 18 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 19 |
18
|
mulridd |
⊢ ( 𝜑 → ( 𝐴 · 1 ) = 𝐴 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 21 |
18
|
sqvald |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 · 𝐴 ) = ( 𝐴 ↑ 2 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ( 𝐴 · 𝐴 ) = ( 𝐴 ↑ 2 ) ) |
| 24 |
20 23
|
breq12d |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ( ( 𝐴 · 1 ) < ( 𝐴 · 𝐴 ) ↔ 𝐴 < ( 𝐴 ↑ 2 ) ) ) |
| 25 |
17 24
|
mpbid |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 𝐴 < ( 𝐴 ↑ 2 ) ) |
| 26 |
8 25
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 1 ) → 𝐴 < ( 𝐴 ↑ 2 ) ) |
| 27 |
26
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) ∧ ¬ 𝐴 ≤ 1 ) → 𝐴 < ( 𝐴 ↑ 2 ) ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → ( 𝐴 ↑ 2 ) ≤ 𝐴 ) |
| 29 |
1
|
resqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 31 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 32 |
30 31
|
lenltd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → ( ( 𝐴 ↑ 2 ) ≤ 𝐴 ↔ ¬ 𝐴 < ( 𝐴 ↑ 2 ) ) ) |
| 33 |
28 32
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → ¬ 𝐴 < ( 𝐴 ↑ 2 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) ∧ ¬ 𝐴 ≤ 1 ) → ¬ 𝐴 < ( 𝐴 ↑ 2 ) ) |
| 35 |
27 34
|
condan |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → 𝐴 ≤ 1 ) |
| 36 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 1 ) → 1 ∈ ℝ ) |
| 37 |
35 36
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → 1 ∈ ℝ ) |
| 38 |
31
|
sqge0d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → 0 ≤ ( 𝐴 ↑ 2 ) ) |
| 39 |
3 30 31 38 28
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → 0 ≤ 𝐴 ) |
| 40 |
3 37 31 39 35
|
eliccd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) → 𝐴 ∈ ( 0 [,] 1 ) ) |
| 41 |
40
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) ≤ 𝐴 → 𝐴 ∈ ( 0 [,] 1 ) ) ) |
| 42 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 43 |
42
|
sseli |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → 𝐴 ∈ ℝ ) |
| 44 |
|
1red |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → 1 ∈ ℝ ) |
| 45 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 46 |
45
|
a1i |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → 0 ∈ ℝ* ) |
| 47 |
44
|
rexrd |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → 1 ∈ ℝ* ) |
| 48 |
|
id |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → 𝐴 ∈ ( 0 [,] 1 ) ) |
| 49 |
46 47 48
|
iccgelbd |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → 0 ≤ 𝐴 ) |
| 50 |
46 47 48
|
iccleubd |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → 𝐴 ≤ 1 ) |
| 51 |
43 44 43 49 50
|
lemul2ad |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → ( 𝐴 · 𝐴 ) ≤ ( 𝐴 · 1 ) ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 0 [,] 1 ) ) → ( 𝐴 · 𝐴 ) ≤ ( 𝐴 · 1 ) ) |
| 53 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 0 [,] 1 ) ) → ( 𝐴 · 𝐴 ) = ( 𝐴 ↑ 2 ) ) |
| 54 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 0 [,] 1 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 55 |
53 54
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 0 [,] 1 ) ) → ( ( 𝐴 · 𝐴 ) ≤ ( 𝐴 · 1 ) ↔ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) ) |
| 56 |
52 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 0 [,] 1 ) ) → ( 𝐴 ↑ 2 ) ≤ 𝐴 ) |
| 57 |
56
|
ex |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 0 [,] 1 ) → ( 𝐴 ↑ 2 ) ≤ 𝐴 ) ) |
| 58 |
41 57
|
impbid |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) ≤ 𝐴 ↔ 𝐴 ∈ ( 0 [,] 1 ) ) ) |