Step |
Hyp |
Ref |
Expression |
1 |
|
sqrlearg.1 |
|
2 |
|
0re |
|
3 |
2
|
a1i |
|
4 |
|
simpr |
|
5 |
|
1red |
|
6 |
1
|
adantr |
|
7 |
5 6
|
ltnled |
|
8 |
4 7
|
mpbird |
|
9 |
|
1red |
|
10 |
1
|
adantr |
|
11 |
2
|
a1i |
|
12 |
|
0lt1 |
|
13 |
12
|
a1i |
|
14 |
|
simpr |
|
15 |
11 9 10 13 14
|
lttrd |
|
16 |
10 15
|
elrpd |
|
17 |
9 10 16 14
|
ltmul2dd |
|
18 |
1
|
recnd |
|
19 |
18
|
mulid1d |
|
20 |
19
|
adantr |
|
21 |
18
|
sqvald |
|
22 |
21
|
eqcomd |
|
23 |
22
|
adantr |
|
24 |
20 23
|
breq12d |
|
25 |
17 24
|
mpbid |
|
26 |
8 25
|
syldan |
|
27 |
26
|
adantlr |
|
28 |
|
simpr |
|
29 |
1
|
resqcld |
|
30 |
29
|
adantr |
|
31 |
1
|
adantr |
|
32 |
30 31
|
lenltd |
|
33 |
28 32
|
mpbid |
|
34 |
33
|
adantr |
|
35 |
27 34
|
condan |
|
36 |
|
1red |
|
37 |
35 36
|
syldan |
|
38 |
31
|
sqge0d |
|
39 |
3 30 31 38 28
|
letrd |
|
40 |
3 37 31 39 35
|
eliccd |
|
41 |
40
|
ex |
|
42 |
|
unitssre |
|
43 |
42
|
sseli |
|
44 |
|
1red |
|
45 |
|
0xr |
|
46 |
45
|
a1i |
|
47 |
44
|
rexrd |
|
48 |
|
id |
|
49 |
46 47 48
|
iccgelbd |
|
50 |
46 47 48
|
iccleubd |
|
51 |
43 44 43 49 50
|
lemul2ad |
|
52 |
51
|
adantl |
|
53 |
22
|
adantr |
|
54 |
19
|
adantr |
|
55 |
53 54
|
breq12d |
|
56 |
52 55
|
mpbid |
|
57 |
56
|
ex |
|
58 |
41 57
|
impbid |
|