| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrlearg.1 |
|
| 2 |
|
0re |
|
| 3 |
2
|
a1i |
|
| 4 |
|
simpr |
|
| 5 |
|
1red |
|
| 6 |
1
|
adantr |
|
| 7 |
5 6
|
ltnled |
|
| 8 |
4 7
|
mpbird |
|
| 9 |
|
1red |
|
| 10 |
1
|
adantr |
|
| 11 |
2
|
a1i |
|
| 12 |
|
0lt1 |
|
| 13 |
12
|
a1i |
|
| 14 |
|
simpr |
|
| 15 |
11 9 10 13 14
|
lttrd |
|
| 16 |
10 15
|
elrpd |
|
| 17 |
9 10 16 14
|
ltmul2dd |
|
| 18 |
1
|
recnd |
|
| 19 |
18
|
mulridd |
|
| 20 |
19
|
adantr |
|
| 21 |
18
|
sqvald |
|
| 22 |
21
|
eqcomd |
|
| 23 |
22
|
adantr |
|
| 24 |
20 23
|
breq12d |
|
| 25 |
17 24
|
mpbid |
|
| 26 |
8 25
|
syldan |
|
| 27 |
26
|
adantlr |
|
| 28 |
|
simpr |
|
| 29 |
1
|
resqcld |
|
| 30 |
29
|
adantr |
|
| 31 |
1
|
adantr |
|
| 32 |
30 31
|
lenltd |
|
| 33 |
28 32
|
mpbid |
|
| 34 |
33
|
adantr |
|
| 35 |
27 34
|
condan |
|
| 36 |
|
1red |
|
| 37 |
35 36
|
syldan |
|
| 38 |
31
|
sqge0d |
|
| 39 |
3 30 31 38 28
|
letrd |
|
| 40 |
3 37 31 39 35
|
eliccd |
|
| 41 |
40
|
ex |
|
| 42 |
|
unitssre |
|
| 43 |
42
|
sseli |
|
| 44 |
|
1red |
|
| 45 |
|
0xr |
|
| 46 |
45
|
a1i |
|
| 47 |
44
|
rexrd |
|
| 48 |
|
id |
|
| 49 |
46 47 48
|
iccgelbd |
|
| 50 |
46 47 48
|
iccleubd |
|
| 51 |
43 44 43 49 50
|
lemul2ad |
|
| 52 |
51
|
adantl |
|
| 53 |
22
|
adantr |
|
| 54 |
19
|
adantr |
|
| 55 |
53 54
|
breq12d |
|
| 56 |
52 55
|
mpbid |
|
| 57 |
56
|
ex |
|
| 58 |
41 57
|
impbid |
|