Metamath Proof Explorer


Theorem ressiocsup

Description: If the supremum belongs to a set of reals, the set is a subset of the unbounded below, right-closed interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ressiocsup.a ( 𝜑𝐴 ⊆ ℝ )
ressiocsup.s 𝑆 = sup ( 𝐴 , ℝ* , < )
ressiocsup.e ( 𝜑𝑆𝐴 )
ressiocsup.5 𝐼 = ( -∞ (,] 𝑆 )
Assertion ressiocsup ( 𝜑𝐴𝐼 )

Proof

Step Hyp Ref Expression
1 ressiocsup.a ( 𝜑𝐴 ⊆ ℝ )
2 ressiocsup.s 𝑆 = sup ( 𝐴 , ℝ* , < )
3 ressiocsup.e ( 𝜑𝑆𝐴 )
4 ressiocsup.5 𝐼 = ( -∞ (,] 𝑆 )
5 mnfxr -∞ ∈ ℝ*
6 5 a1i ( ( 𝜑𝑥𝐴 ) → -∞ ∈ ℝ* )
7 ressxr ℝ ⊆ ℝ*
8 7 a1i ( 𝜑 → ℝ ⊆ ℝ* )
9 1 8 sstrd ( 𝜑𝐴 ⊆ ℝ* )
10 9 adantr ( ( 𝜑𝑥𝐴 ) → 𝐴 ⊆ ℝ* )
11 10 supxrcld ( ( 𝜑𝑥𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )
12 2 11 eqeltrid ( ( 𝜑𝑥𝐴 ) → 𝑆 ∈ ℝ* )
13 9 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ* )
14 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝐴 ⊆ ℝ )
15 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
16 14 15 sseldd ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
17 16 mnfltd ( ( 𝜑𝑥𝐴 ) → -∞ < 𝑥 )
18 supxrub ( ( 𝐴 ⊆ ℝ*𝑥𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) )
19 10 15 18 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) )
20 2 a1i ( ( 𝜑𝑥𝐴 ) → 𝑆 = sup ( 𝐴 , ℝ* , < ) )
21 20 eqcomd ( ( 𝜑𝑥𝐴 ) → sup ( 𝐴 , ℝ* , < ) = 𝑆 )
22 19 21 breqtrd ( ( 𝜑𝑥𝐴 ) → 𝑥𝑆 )
23 6 12 13 17 22 eliocd ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ( -∞ (,] 𝑆 ) )
24 23 4 eleqtrrdi ( ( 𝜑𝑥𝐴 ) → 𝑥𝐼 )
25 24 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝑥𝐼 )
26 dfss3 ( 𝐴𝐼 ↔ ∀ 𝑥𝐴 𝑥𝐼 )
27 25 26 sylibr ( 𝜑𝐴𝐼 )