Step |
Hyp |
Ref |
Expression |
1 |
|
ressiocsup.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ressiocsup.s |
⊢ 𝑆 = sup ( 𝐴 , ℝ* , < ) |
3 |
|
ressiocsup.e |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
4 |
|
ressiocsup.5 |
⊢ 𝐼 = ( -∞ (,] 𝑆 ) |
5 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → -∞ ∈ ℝ* ) |
7 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
8 |
7
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
9 |
1 8
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
11 |
10
|
supxrcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
12 |
2 11
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ∈ ℝ* ) |
13 |
9
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
16 |
14 15
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
17 |
16
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → -∞ < 𝑥 ) |
18 |
|
supxrub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) |
19 |
10 15 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) |
20 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 = sup ( 𝐴 , ℝ* , < ) ) |
21 |
20
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = 𝑆 ) |
22 |
19 21
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ 𝑆 ) |
23 |
6 12 13 17 22
|
eliocd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( -∞ (,] 𝑆 ) ) |
24 |
23 4
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
25 |
24
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐼 ) |
26 |
|
dfss3 |
⊢ ( 𝐴 ⊆ 𝐼 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐼 ) |
27 |
25 26
|
sylibr |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) |