Step |
Hyp |
Ref |
Expression |
1 |
|
ressiocsup.a |
|- ( ph -> A C_ RR ) |
2 |
|
ressiocsup.s |
|- S = sup ( A , RR* , < ) |
3 |
|
ressiocsup.e |
|- ( ph -> S e. A ) |
4 |
|
ressiocsup.5 |
|- I = ( -oo (,] S ) |
5 |
|
mnfxr |
|- -oo e. RR* |
6 |
5
|
a1i |
|- ( ( ph /\ x e. A ) -> -oo e. RR* ) |
7 |
|
ressxr |
|- RR C_ RR* |
8 |
7
|
a1i |
|- ( ph -> RR C_ RR* ) |
9 |
1 8
|
sstrd |
|- ( ph -> A C_ RR* ) |
10 |
9
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR* ) |
11 |
10
|
supxrcld |
|- ( ( ph /\ x e. A ) -> sup ( A , RR* , < ) e. RR* ) |
12 |
2 11
|
eqeltrid |
|- ( ( ph /\ x e. A ) -> S e. RR* ) |
13 |
9
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR* ) |
14 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR ) |
15 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
16 |
14 15
|
sseldd |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
17 |
16
|
mnfltd |
|- ( ( ph /\ x e. A ) -> -oo < x ) |
18 |
|
supxrub |
|- ( ( A C_ RR* /\ x e. A ) -> x <_ sup ( A , RR* , < ) ) |
19 |
10 15 18
|
syl2anc |
|- ( ( ph /\ x e. A ) -> x <_ sup ( A , RR* , < ) ) |
20 |
2
|
a1i |
|- ( ( ph /\ x e. A ) -> S = sup ( A , RR* , < ) ) |
21 |
20
|
eqcomd |
|- ( ( ph /\ x e. A ) -> sup ( A , RR* , < ) = S ) |
22 |
19 21
|
breqtrd |
|- ( ( ph /\ x e. A ) -> x <_ S ) |
23 |
6 12 13 17 22
|
eliocd |
|- ( ( ph /\ x e. A ) -> x e. ( -oo (,] S ) ) |
24 |
23 4
|
eleqtrrdi |
|- ( ( ph /\ x e. A ) -> x e. I ) |
25 |
24
|
ralrimiva |
|- ( ph -> A. x e. A x e. I ) |
26 |
|
dfss3 |
|- ( A C_ I <-> A. x e. A x e. I ) |
27 |
25 26
|
sylibr |
|- ( ph -> A C_ I ) |