| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preimageiingt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
preimageiingt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 3 |
|
preimageiingt.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ 𝐴 ) |
| 5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ ) |
| 6 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 8 |
5 7
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 9 |
8
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 10 |
9
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 11 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 12 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ* ) |
| 13 |
2
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
| 14 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 15 |
|
rpreccl |
⊢ ( 𝑛 ∈ ℝ+ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 16 |
14 15
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 18 |
5 17
|
ltsubrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐶 ) |
| 19 |
18
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐶 ) |
| 20 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐶 ≤ 𝐵 ) |
| 21 |
10 12 13 19 20
|
xrltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) |
| 22 |
4 21
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) ) |
| 23 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) ) |
| 24 |
22 23
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 25 |
24
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 26 |
|
vex |
⊢ 𝑥 ∈ V |
| 27 |
|
eliin |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) ) |
| 28 |
26 27
|
ax-mp |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 29 |
25 28
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 30 |
29
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≤ 𝐵 → 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) ) |
| 31 |
30
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝐶 ≤ 𝐵 → 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) ) ) |
| 32 |
1 31
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝐵 → 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) ) |
| 33 |
|
nfcv |
⊢ Ⅎ 𝑥 ℕ |
| 34 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } |
| 35 |
33 34
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } |
| 36 |
35
|
rabssf |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ⊆ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝐵 → 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) ) |
| 37 |
32 36
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ⊆ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 38 |
|
nnn0 |
⊢ ℕ ≠ ∅ |
| 39 |
|
iinrab |
⊢ ( ℕ ≠ ∅ → ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 40 |
38 39
|
ax-mp |
⊢ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 42 |
9
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 43 |
2
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 44 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) |
| 45 |
42 43 44
|
xrltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
| 46 |
45
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 47 |
46
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 48 |
47
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
| 49 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) |
| 50 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 |
| 51 |
49 50
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) |
| 52 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐶 ∈ ℝ ) |
| 53 |
2
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 54 |
51 52 53
|
xrralrecnnge |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 55 |
48 54
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐶 ≤ 𝐵 ) |
| 56 |
55
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → 𝐶 ≤ 𝐵 ) ) |
| 57 |
56
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → 𝐶 ≤ 𝐵 ) ) ) |
| 58 |
1 57
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → 𝐶 ≤ 𝐵 ) ) |
| 59 |
|
ss2rab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → 𝐶 ≤ 𝐵 ) ) |
| 60 |
58 59
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ) |
| 61 |
41 60
|
eqsstrd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ) |
| 62 |
37 61
|
eqssd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } = ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |