| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preimaleiinlt.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | preimaleiinlt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | preimaleiinlt.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  𝐴 ) | 
						
							| 5 | 2 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  𝐵  ∈  ℝ* ) | 
						
							| 6 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  𝐶  ∈  ℝ ) | 
						
							| 7 | 6 | rexrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  𝐶  ∈  ℝ* ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐶  ∈  ℝ ) | 
						
							| 9 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 11 | 8 10 | readdcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 12 | 11 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 13 | 12 | rexrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  𝐵  ≤  𝐶 ) | 
						
							| 15 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 16 |  | rpreccl | ⊢ ( 𝑛  ∈  ℝ+  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 19 | 8 18 | ltaddrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐶  <  ( 𝐶  +  ( 1  /  𝑛 ) ) ) | 
						
							| 20 | 19 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  𝐶  <  ( 𝐶  +  ( 1  /  𝑛 ) ) ) | 
						
							| 21 | 5 7 13 14 20 | xrlelttrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) ) | 
						
							| 22 | 4 21 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  ∈  𝐴  ∧  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 23 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ↔  ( 𝑥  ∈  𝐴  ∧  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) | 
						
							| 25 | 24 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  →  ∀ 𝑛  ∈  ℕ 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) | 
						
							| 26 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 27 |  | eliin | ⊢ ( 𝑥  ∈  V  →  ( 𝑥  ∈  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ↔  ∀ 𝑛  ∈  ℕ 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) ) | 
						
							| 28 | 26 27 | ax-mp | ⊢ ( 𝑥  ∈  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ↔  ∀ 𝑛  ∈  ℕ 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) | 
						
							| 29 | 25 28 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝐵  ≤  𝐶 )  →  𝑥  ∈  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) | 
						
							| 30 | 29 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  ≤  𝐶  →  𝑥  ∈  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) ) | 
						
							| 31 | 30 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝐵  ≤  𝐶  →  𝑥  ∈  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) ) ) | 
						
							| 32 | 1 31 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( 𝐵  ≤  𝐶  →  𝑥  ∈  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) ) | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑥 ℕ | 
						
							| 34 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } | 
						
							| 35 | 33 34 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } | 
						
							| 36 | 35 | rabssf | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ⊆  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ≤  𝐶  →  𝑥  ∈  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) ) | 
						
							| 37 | 32 36 | sylibr | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ⊆  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) | 
						
							| 38 |  | nnn0 | ⊢ ℕ  ≠  ∅ | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ℕ  ≠  ∅ ) | 
						
							| 40 |  | iinrab | ⊢ ( ℕ  ≠  ∅  →  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  =  { 𝑥  ∈  𝐴  ∣  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  =  { 𝑥  ∈  𝐴  ∣  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) | 
						
							| 42 | 2 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 43 | 11 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 44 | 43 | rexrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) ) | 
						
							| 46 | 42 44 45 | xrltled | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  𝐵  ≤  ( 𝐶  +  ( 1  /  𝑛 ) ) ) | 
						
							| 47 | 46 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) )  →  𝐵  ≤  ( 𝐶  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 48 | 47 | ralimdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) )  →  ∀ 𝑛  ∈  ℕ 𝐵  ≤  ( 𝐶  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 49 | 48 | imp | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  ∀ 𝑛  ∈  ℕ 𝐵  ≤  ( 𝐶  +  ( 1  /  𝑛 ) ) ) | 
						
							| 50 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  𝐴 ) | 
						
							| 51 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) | 
						
							| 52 | 50 51 | nfan | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) ) | 
						
							| 53 | 2 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 54 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 55 | 52 53 54 | xrralrecnnle | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  ( 𝐵  ≤  𝐶  ↔  ∀ 𝑛  ∈  ℕ 𝐵  ≤  ( 𝐶  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 56 | 49 55 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) )  →  𝐵  ≤  𝐶 ) | 
						
							| 57 | 56 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) )  →  𝐵  ≤  𝐶 ) ) | 
						
							| 58 | 57 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) )  →  𝐵  ≤  𝐶 ) ) ) | 
						
							| 59 | 1 58 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) )  →  𝐵  ≤  𝐶 ) ) | 
						
							| 60 |  | ss2rab | ⊢ ( { 𝑥  ∈  𝐴  ∣  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ⊆  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ↔  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) )  →  𝐵  ≤  𝐶 ) ) | 
						
							| 61 | 59 60 | sylibr | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  ∀ 𝑛  ∈  ℕ 𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ⊆  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 } ) | 
						
							| 62 | 41 61 | eqsstrd | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ⊆  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 } ) | 
						
							| 63 | 37 62 | eqssd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  =  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) |