Metamath Proof Explorer


Theorem preimaleiinlt

Description: A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaleiinlt.x x φ
preimaleiinlt.b φ x A B *
preimaleiinlt.c φ C
Assertion preimaleiinlt φ x A | B C = n x A | B < C + 1 n

Proof

Step Hyp Ref Expression
1 preimaleiinlt.x x φ
2 preimaleiinlt.b φ x A B *
3 preimaleiinlt.c φ C
4 simpllr φ x A B C n x A
5 2 ad2antrr φ x A B C n B *
6 3 ad3antrrr φ x A B C n C
7 6 rexrd φ x A B C n C *
8 3 adantr φ n C
9 nnrecre n 1 n
10 9 adantl φ n 1 n
11 8 10 readdcld φ n C + 1 n
12 11 ad4ant14 φ x A B C n C + 1 n
13 12 rexrd φ x A B C n C + 1 n *
14 simplr φ x A B C n B C
15 nnrp n n +
16 rpreccl n + 1 n +
17 15 16 syl n 1 n +
18 17 adantl φ n 1 n +
19 8 18 ltaddrpd φ n C < C + 1 n
20 19 ad4ant14 φ x A B C n C < C + 1 n
21 5 7 13 14 20 xrlelttrd φ x A B C n B < C + 1 n
22 4 21 jca φ x A B C n x A B < C + 1 n
23 rabid x x A | B < C + 1 n x A B < C + 1 n
24 22 23 sylibr φ x A B C n x x A | B < C + 1 n
25 24 ralrimiva φ x A B C n x x A | B < C + 1 n
26 vex x V
27 eliin x V x n x A | B < C + 1 n n x x A | B < C + 1 n
28 26 27 ax-mp x n x A | B < C + 1 n n x x A | B < C + 1 n
29 25 28 sylibr φ x A B C x n x A | B < C + 1 n
30 29 ex φ x A B C x n x A | B < C + 1 n
31 30 ex φ x A B C x n x A | B < C + 1 n
32 1 31 ralrimi φ x A B C x n x A | B < C + 1 n
33 nfcv _ x
34 nfrab1 _ x x A | B < C + 1 n
35 33 34 nfiin _ x n x A | B < C + 1 n
36 35 rabssf x A | B C n x A | B < C + 1 n x A B C x n x A | B < C + 1 n
37 32 36 sylibr φ x A | B C n x A | B < C + 1 n
38 nnn0
39 38 a1i φ
40 iinrab n x A | B < C + 1 n = x A | n B < C + 1 n
41 39 40 syl φ n x A | B < C + 1 n = x A | n B < C + 1 n
42 2 ad2antrr φ x A n B < C + 1 n B *
43 11 ad4ant13 φ x A n B < C + 1 n C + 1 n
44 43 rexrd φ x A n B < C + 1 n C + 1 n *
45 simpr φ x A n B < C + 1 n B < C + 1 n
46 42 44 45 xrltled φ x A n B < C + 1 n B C + 1 n
47 46 ex φ x A n B < C + 1 n B C + 1 n
48 47 ralimdva φ x A n B < C + 1 n n B C + 1 n
49 48 imp φ x A n B < C + 1 n n B C + 1 n
50 nfv n φ x A
51 nfra1 n n B < C + 1 n
52 50 51 nfan n φ x A n B < C + 1 n
53 2 adantr φ x A n B < C + 1 n B *
54 3 ad2antrr φ x A n B < C + 1 n C
55 52 53 54 xrralrecnnle φ x A n B < C + 1 n B C n B C + 1 n
56 49 55 mpbird φ x A n B < C + 1 n B C
57 56 ex φ x A n B < C + 1 n B C
58 57 ex φ x A n B < C + 1 n B C
59 1 58 ralrimi φ x A n B < C + 1 n B C
60 ss2rab x A | n B < C + 1 n x A | B C x A n B < C + 1 n B C
61 59 60 sylibr φ x A | n B < C + 1 n x A | B C
62 41 61 eqsstrd φ n x A | B < C + 1 n x A | B C
63 37 62 eqssd φ x A | B C = n x A | B < C + 1 n