| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pimgtmnff.1 |  |-  F/ x ph | 
						
							| 2 |  | pimgtmnff.2 |  |-  F/_ x A | 
						
							| 3 |  | pimgtmnff.3 |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 4 | 2 | ssrab2f |  |-  { x e. A | -oo < B } C_ A | 
						
							| 5 | 4 | a1i |  |-  ( ph -> { x e. A | -oo < B } C_ A ) | 
						
							| 6 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 7 |  | mnflt |  |-  ( B e. RR -> -oo < B ) | 
						
							| 8 | 3 7 | syl |  |-  ( ( ph /\ x e. A ) -> -oo < B ) | 
						
							| 9 | 6 8 | jca |  |-  ( ( ph /\ x e. A ) -> ( x e. A /\ -oo < B ) ) | 
						
							| 10 |  | rabid |  |-  ( x e. { x e. A | -oo < B } <-> ( x e. A /\ -oo < B ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( ph /\ x e. A ) -> x e. { x e. A | -oo < B } ) | 
						
							| 12 | 11 | ex |  |-  ( ph -> ( x e. A -> x e. { x e. A | -oo < B } ) ) | 
						
							| 13 | 1 12 | ralrimi |  |-  ( ph -> A. x e. A x e. { x e. A | -oo < B } ) | 
						
							| 14 |  | nfrab1 |  |-  F/_ x { x e. A | -oo < B } | 
						
							| 15 | 2 14 | dfss3f |  |-  ( A C_ { x e. A | -oo < B } <-> A. x e. A x e. { x e. A | -oo < B } ) | 
						
							| 16 | 13 15 | sylibr |  |-  ( ph -> A C_ { x e. A | -oo < B } ) | 
						
							| 17 | 5 16 | eqssd |  |-  ( ph -> { x e. A | -oo < B } = A ) |