| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimgtmnff.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
pimgtmnff.2 |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
pimgtmnff.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 |
2
|
ssrab2f |
⊢ { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } ⊆ 𝐴 |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } ⊆ 𝐴 ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 7 |
|
mnflt |
⊢ ( 𝐵 ∈ ℝ → -∞ < 𝐵 ) |
| 8 |
3 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → -∞ < 𝐵 ) |
| 9 |
6 8
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ∧ -∞ < 𝐵 ) ) |
| 10 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } ↔ ( 𝑥 ∈ 𝐴 ∧ -∞ < 𝐵 ) ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } ) |
| 12 |
11
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } ) ) |
| 13 |
1 12
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } ) |
| 14 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } |
| 15 |
2 14
|
dfss3f |
⊢ ( 𝐴 ⊆ { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } ) |
| 16 |
13 15
|
sylibr |
⊢ ( 𝜑 → 𝐴 ⊆ { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } ) |
| 17 |
5 16
|
eqssd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } = 𝐴 ) |