Metamath Proof Explorer


Theorem pimgtmnff

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimgtmnff.1 𝑥 𝜑
pimgtmnff.2 𝑥 𝐴
pimgtmnff.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion pimgtmnff ( 𝜑 → { 𝑥𝐴 ∣ -∞ < 𝐵 } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimgtmnff.1 𝑥 𝜑
2 pimgtmnff.2 𝑥 𝐴
3 pimgtmnff.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 2 ssrab2f { 𝑥𝐴 ∣ -∞ < 𝐵 } ⊆ 𝐴
5 4 a1i ( 𝜑 → { 𝑥𝐴 ∣ -∞ < 𝐵 } ⊆ 𝐴 )
6 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
7 mnflt ( 𝐵 ∈ ℝ → -∞ < 𝐵 )
8 3 7 syl ( ( 𝜑𝑥𝐴 ) → -∞ < 𝐵 )
9 6 8 jca ( ( 𝜑𝑥𝐴 ) → ( 𝑥𝐴 ∧ -∞ < 𝐵 ) )
10 rabid ( 𝑥 ∈ { 𝑥𝐴 ∣ -∞ < 𝐵 } ↔ ( 𝑥𝐴 ∧ -∞ < 𝐵 ) )
11 9 10 sylibr ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ { 𝑥𝐴 ∣ -∞ < 𝐵 } )
12 11 ex ( 𝜑 → ( 𝑥𝐴𝑥 ∈ { 𝑥𝐴 ∣ -∞ < 𝐵 } ) )
13 1 12 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝑥 ∈ { 𝑥𝐴 ∣ -∞ < 𝐵 } )
14 nfrab1 𝑥 { 𝑥𝐴 ∣ -∞ < 𝐵 }
15 2 14 dfss3f ( 𝐴 ⊆ { 𝑥𝐴 ∣ -∞ < 𝐵 } ↔ ∀ 𝑥𝐴 𝑥 ∈ { 𝑥𝐴 ∣ -∞ < 𝐵 } )
16 13 15 sylibr ( 𝜑𝐴 ⊆ { 𝑥𝐴 ∣ -∞ < 𝐵 } )
17 5 16 eqssd ( 𝜑 → { 𝑥𝐴 ∣ -∞ < 𝐵 } = 𝐴 )