Metamath Proof Explorer


Theorem pimgtmnff

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimgtmnff.1 x φ
pimgtmnff.2 _ x A
pimgtmnff.3 φ x A B
Assertion pimgtmnff φ x A | −∞ < B = A

Proof

Step Hyp Ref Expression
1 pimgtmnff.1 x φ
2 pimgtmnff.2 _ x A
3 pimgtmnff.3 φ x A B
4 2 ssrab2f x A | −∞ < B A
5 4 a1i φ x A | −∞ < B A
6 simpr φ x A x A
7 mnflt B −∞ < B
8 3 7 syl φ x A −∞ < B
9 6 8 jca φ x A x A −∞ < B
10 rabid x x A | −∞ < B x A −∞ < B
11 9 10 sylibr φ x A x x A | −∞ < B
12 11 ex φ x A x x A | −∞ < B
13 1 12 ralrimi φ x A x x A | −∞ < B
14 nfrab1 _ x x A | −∞ < B
15 2 14 dfss3f A x A | −∞ < B x A x x A | −∞ < B
16 13 15 sylibr φ A x A | −∞ < B
17 5 16 eqssd φ x A | −∞ < B = A