Metamath Proof Explorer


Theorem pimltmnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -oo , is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimltmnf2.1
|- F/_ x F
pimltmnf2.2
|- ( ph -> F : A --> RR )
Assertion pimltmnf2
|- ( ph -> { x e. A | ( F ` x ) < -oo } = (/) )

Proof

Step Hyp Ref Expression
1 pimltmnf2.1
 |-  F/_ x F
2 pimltmnf2.2
 |-  ( ph -> F : A --> RR )
3 nfcv
 |-  F/_ x A
4 nfcv
 |-  F/_ y A
5 nfv
 |-  F/ y ( F ` x ) < -oo
6 nfcv
 |-  F/_ x y
7 1 6 nffv
 |-  F/_ x ( F ` y )
8 nfcv
 |-  F/_ x <
9 nfcv
 |-  F/_ x -oo
10 7 8 9 nfbr
 |-  F/ x ( F ` y ) < -oo
11 fveq2
 |-  ( x = y -> ( F ` x ) = ( F ` y ) )
12 11 breq1d
 |-  ( x = y -> ( ( F ` x ) < -oo <-> ( F ` y ) < -oo ) )
13 3 4 5 10 12 cbvrabw
 |-  { x e. A | ( F ` x ) < -oo } = { y e. A | ( F ` y ) < -oo }
14 13 a1i
 |-  ( ph -> { x e. A | ( F ` x ) < -oo } = { y e. A | ( F ` y ) < -oo } )
15 mnfxr
 |-  -oo e. RR*
16 15 a1i
 |-  ( ( ph /\ y e. A ) -> -oo e. RR* )
17 2 ffvelrnda
 |-  ( ( ph /\ y e. A ) -> ( F ` y ) e. RR )
18 17 rexrd
 |-  ( ( ph /\ y e. A ) -> ( F ` y ) e. RR* )
19 17 mnfltd
 |-  ( ( ph /\ y e. A ) -> -oo < ( F ` y ) )
20 16 18 19 xrltled
 |-  ( ( ph /\ y e. A ) -> -oo <_ ( F ` y ) )
21 16 18 xrlenltd
 |-  ( ( ph /\ y e. A ) -> ( -oo <_ ( F ` y ) <-> -. ( F ` y ) < -oo ) )
22 20 21 mpbid
 |-  ( ( ph /\ y e. A ) -> -. ( F ` y ) < -oo )
23 22 ralrimiva
 |-  ( ph -> A. y e. A -. ( F ` y ) < -oo )
24 rabeq0
 |-  ( { y e. A | ( F ` y ) < -oo } = (/) <-> A. y e. A -. ( F ` y ) < -oo )
25 23 24 sylibr
 |-  ( ph -> { y e. A | ( F ` y ) < -oo } = (/) )
26 14 25 eqtrd
 |-  ( ph -> { x e. A | ( F ` x ) < -oo } = (/) )