Metamath Proof Explorer


Theorem pimltmnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -oo , is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltmnf2.1 _ x F
pimltmnf2.2 φ F : A
Assertion pimltmnf2 φ x A | F x < −∞ =

Proof

Step Hyp Ref Expression
1 pimltmnf2.1 _ x F
2 pimltmnf2.2 φ F : A
3 nfcv _ x A
4 1 3 2 pimltmnf2f φ x A | F x < −∞ =