Metamath Proof Explorer


Theorem pimltmnf2f

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -oo , is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltmnf2f.1
|- F/_ x F
pimltmnf2f.2
|- F/_ x A
pimltmnf2f.3
|- ( ph -> F : A --> RR )
Assertion pimltmnf2f
|- ( ph -> { x e. A | ( F ` x ) < -oo } = (/) )

Proof

Step Hyp Ref Expression
1 pimltmnf2f.1
 |-  F/_ x F
2 pimltmnf2f.2
 |-  F/_ x A
3 pimltmnf2f.3
 |-  ( ph -> F : A --> RR )
4 nfcv
 |-  F/_ y A
5 nfv
 |-  F/ y ( F ` x ) < -oo
6 nfcv
 |-  F/_ x y
7 1 6 nffv
 |-  F/_ x ( F ` y )
8 nfcv
 |-  F/_ x <
9 nfcv
 |-  F/_ x -oo
10 7 8 9 nfbr
 |-  F/ x ( F ` y ) < -oo
11 fveq2
 |-  ( x = y -> ( F ` x ) = ( F ` y ) )
12 11 breq1d
 |-  ( x = y -> ( ( F ` x ) < -oo <-> ( F ` y ) < -oo ) )
13 2 4 5 10 12 cbvrabw
 |-  { x e. A | ( F ` x ) < -oo } = { y e. A | ( F ` y ) < -oo }
14 3 ffvelcdmda
 |-  ( ( ph /\ y e. A ) -> ( F ` y ) e. RR )
15 14 rexrd
 |-  ( ( ph /\ y e. A ) -> ( F ` y ) e. RR* )
16 15 mnfled
 |-  ( ( ph /\ y e. A ) -> -oo <_ ( F ` y ) )
17 mnfxr
 |-  -oo e. RR*
18 17 a1i
 |-  ( ( ph /\ y e. A ) -> -oo e. RR* )
19 18 15 xrlenltd
 |-  ( ( ph /\ y e. A ) -> ( -oo <_ ( F ` y ) <-> -. ( F ` y ) < -oo ) )
20 16 19 mpbid
 |-  ( ( ph /\ y e. A ) -> -. ( F ` y ) < -oo )
21 20 ralrimiva
 |-  ( ph -> A. y e. A -. ( F ` y ) < -oo )
22 rabeq0
 |-  ( { y e. A | ( F ` y ) < -oo } = (/) <-> A. y e. A -. ( F ` y ) < -oo )
23 21 22 sylibr
 |-  ( ph -> { y e. A | ( F ` y ) < -oo } = (/) )
24 13 23 eqtrid
 |-  ( ph -> { x e. A | ( F ` x ) < -oo } = (/) )