Metamath Proof Explorer


Theorem pimltmnf2f

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -oo , is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltmnf2f.1 𝑥 𝐹
pimltmnf2f.2 𝑥 𝐴
pimltmnf2f.3 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
Assertion pimltmnf2f ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < -∞ } = ∅ )

Proof

Step Hyp Ref Expression
1 pimltmnf2f.1 𝑥 𝐹
2 pimltmnf2f.2 𝑥 𝐴
3 pimltmnf2f.3 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
4 nfcv 𝑦 𝐴
5 nfv 𝑦 ( 𝐹𝑥 ) < -∞
6 nfcv 𝑥 𝑦
7 1 6 nffv 𝑥 ( 𝐹𝑦 )
8 nfcv 𝑥 <
9 nfcv 𝑥 -∞
10 7 8 9 nfbr 𝑥 ( 𝐹𝑦 ) < -∞
11 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
12 11 breq1d ( 𝑥 = 𝑦 → ( ( 𝐹𝑥 ) < -∞ ↔ ( 𝐹𝑦 ) < -∞ ) )
13 2 4 5 10 12 cbvrabw { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < -∞ } = { 𝑦𝐴 ∣ ( 𝐹𝑦 ) < -∞ }
14 3 ffvelcdmda ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ ℝ )
15 14 rexrd ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ ℝ* )
16 15 mnfled ( ( 𝜑𝑦𝐴 ) → -∞ ≤ ( 𝐹𝑦 ) )
17 mnfxr -∞ ∈ ℝ*
18 17 a1i ( ( 𝜑𝑦𝐴 ) → -∞ ∈ ℝ* )
19 18 15 xrlenltd ( ( 𝜑𝑦𝐴 ) → ( -∞ ≤ ( 𝐹𝑦 ) ↔ ¬ ( 𝐹𝑦 ) < -∞ ) )
20 16 19 mpbid ( ( 𝜑𝑦𝐴 ) → ¬ ( 𝐹𝑦 ) < -∞ )
21 20 ralrimiva ( 𝜑 → ∀ 𝑦𝐴 ¬ ( 𝐹𝑦 ) < -∞ )
22 rabeq0 ( { 𝑦𝐴 ∣ ( 𝐹𝑦 ) < -∞ } = ∅ ↔ ∀ 𝑦𝐴 ¬ ( 𝐹𝑦 ) < -∞ )
23 21 22 sylibr ( 𝜑 → { 𝑦𝐴 ∣ ( 𝐹𝑦 ) < -∞ } = ∅ )
24 13 23 eqtrid ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < -∞ } = ∅ )