| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( H = if ( H e. CH , H , ~H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , ~H ) ) ) |
| 2 |
1
|
fveq1d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( projh ` H ) ` A ) = ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) |
| 3 |
2
|
fveq2d |
|- ( H = if ( H e. CH , H , ~H ) -> ( normh ` ( ( projh ` H ) ` A ) ) = ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ) |
| 4 |
3
|
oveq1d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) ) |
| 5 |
|
2fveq3 |
|- ( H = if ( H e. CH , H , ~H ) -> ( projh ` ( _|_ ` H ) ) = ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ) |
| 6 |
5
|
fveq1d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) |
| 7 |
6
|
fveq2d |
|- ( H = if ( H e. CH , H , ~H ) -> ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ) |
| 8 |
7
|
oveq1d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) |
| 9 |
4 8
|
oveq12d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) ) |
| 10 |
9
|
eqeq2d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) <-> ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) ) ) |
| 11 |
|
fveq2 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) ) |
| 12 |
11
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) ^ 2 ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) |
| 13 |
|
2fveq3 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) = ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ) |
| 14 |
13
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) |
| 15 |
|
2fveq3 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) = ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ) |
| 16 |
15
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) |
| 17 |
14 16
|
oveq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) ) |
| 18 |
12 17
|
eqeq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) <-> ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) ) ) |
| 19 |
|
ifchhv |
|- if ( H e. CH , H , ~H ) e. CH |
| 20 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
| 21 |
19 20
|
pjpythi |
|- ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) |
| 22 |
10 18 21
|
dedth2h |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) ) |