Metamath Proof Explorer


Theorem pjssge0ii

Description: Theorem 4.5(iv)->(v) of Beran p. 112. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1
|- H e. CH
pjidm.2
|- A e. ~H
pjsslem.1
|- G e. CH
Assertion pjssge0ii
|- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) )

Proof

Step Hyp Ref Expression
1 pjidm.1
 |-  H e. CH
2 pjidm.2
 |-  A e. ~H
3 pjsslem.1
 |-  G e. CH
4 1 choccli
 |-  ( _|_ ` H ) e. CH
5 3 4 chincli
 |-  ( G i^i ( _|_ ` H ) ) e. CH
6 5 2 pjhclii
 |-  ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) e. ~H
7 6 normcli
 |-  ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) e. RR
8 7 sqge0i
 |-  0 <_ ( ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) ^ 2 )
9 oveq1
 |-  ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) .ih A ) )
10 5 2 pjinormii
 |-  ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) ^ 2 )
11 9 10 eqtrdi
 |-  ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) ^ 2 ) )
12 8 11 breqtrrid
 |-  ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) )