Description: Lemma for plydivalg . (Contributed by Mario Carneiro, 24-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | plydiv.pl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
|
| plydiv.tm | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
||
| plydiv.rc | |- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
||
| plydiv.m1 | |- ( ph -> -u 1 e. S ) |
||
| Assertion | plydivlem1 | |- ( ph -> 0 e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plydiv.pl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
|
| 2 | plydiv.tm | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
|
| 3 | plydiv.rc | |- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
|
| 4 | plydiv.m1 | |- ( ph -> -u 1 e. S ) |
|
| 5 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
| 6 | neg1mulneg1e1 | |- ( -u 1 x. -u 1 ) = 1 |
|
| 7 | 2 4 4 | caovcld | |- ( ph -> ( -u 1 x. -u 1 ) e. S ) |
| 8 | 6 7 | eqeltrrid | |- ( ph -> 1 e. S ) |
| 9 | 1 8 4 | caovcld | |- ( ph -> ( 1 + -u 1 ) e. S ) |
| 10 | 5 9 | eqeltrrid | |- ( ph -> 0 e. S ) |