Metamath Proof Explorer


Theorem plydivlem1

Description: Lemma for plydivalg . (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses plydiv.pl
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S )
plydiv.tm
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
plydiv.rc
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S )
plydiv.m1
|- ( ph -> -u 1 e. S )
Assertion plydivlem1
|- ( ph -> 0 e. S )

Proof

Step Hyp Ref Expression
1 plydiv.pl
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S )
2 plydiv.tm
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
3 plydiv.rc
 |-  ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S )
4 plydiv.m1
 |-  ( ph -> -u 1 e. S )
5 1pneg1e0
 |-  ( 1 + -u 1 ) = 0
6 neg1mulneg1e1
 |-  ( -u 1 x. -u 1 ) = 1
7 2 4 4 caovcld
 |-  ( ph -> ( -u 1 x. -u 1 ) e. S )
8 6 7 eqeltrrid
 |-  ( ph -> 1 e. S )
9 1 8 4 caovcld
 |-  ( ph -> ( 1 + -u 1 ) e. S )
10 5 9 eqeltrrid
 |-  ( ph -> 0 e. S )