| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
| 4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
| 5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
| 6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
| 7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
| 8 |
|
plydiv.r |
|- R = ( F oF - ( G oF x. q ) ) |
| 9 |
1 2 3 4 5 6 7 8
|
plydivex |
|- ( ph -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |
| 10 |
|
simpll |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> ph ) |
| 11 |
10 1
|
sylan |
|- ( ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 12 |
10 2
|
sylan |
|- ( ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 13 |
10 3
|
sylan |
|- ( ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
| 14 |
10 4
|
syl |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> -u 1 e. S ) |
| 15 |
10 5
|
syl |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> F e. ( Poly ` S ) ) |
| 16 |
10 6
|
syl |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> G e. ( Poly ` S ) ) |
| 17 |
10 7
|
syl |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> G =/= 0p ) |
| 18 |
|
eqid |
|- ( F oF - ( G oF x. p ) ) = ( F oF - ( G oF x. p ) ) |
| 19 |
|
simplrr |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> p e. ( Poly ` S ) ) |
| 20 |
|
simprr |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) |
| 21 |
|
simplrl |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> q e. ( Poly ` S ) ) |
| 22 |
|
simprl |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |
| 23 |
11 12 13 14 15 16 17 18 19 20 8 21 22
|
plydiveu |
|- ( ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) /\ ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) -> q = p ) |
| 24 |
23
|
ex |
|- ( ( ph /\ ( q e. ( Poly ` S ) /\ p e. ( Poly ` S ) ) ) -> ( ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) -> q = p ) ) |
| 25 |
24
|
ralrimivva |
|- ( ph -> A. q e. ( Poly ` S ) A. p e. ( Poly ` S ) ( ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) -> q = p ) ) |
| 26 |
|
oveq2 |
|- ( q = p -> ( G oF x. q ) = ( G oF x. p ) ) |
| 27 |
26
|
oveq2d |
|- ( q = p -> ( F oF - ( G oF x. q ) ) = ( F oF - ( G oF x. p ) ) ) |
| 28 |
8 27
|
eqtrid |
|- ( q = p -> R = ( F oF - ( G oF x. p ) ) ) |
| 29 |
28
|
eqeq1d |
|- ( q = p -> ( R = 0p <-> ( F oF - ( G oF x. p ) ) = 0p ) ) |
| 30 |
28
|
fveq2d |
|- ( q = p -> ( deg ` R ) = ( deg ` ( F oF - ( G oF x. p ) ) ) ) |
| 31 |
30
|
breq1d |
|- ( q = p -> ( ( deg ` R ) < ( deg ` G ) <-> ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) |
| 32 |
29 31
|
orbi12d |
|- ( q = p -> ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) <-> ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) |
| 33 |
32
|
reu4 |
|- ( E! q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) <-> ( E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ A. q e. ( Poly ` S ) A. p e. ( Poly ` S ) ( ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) /\ ( ( F oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) -> q = p ) ) ) |
| 34 |
9 25 33
|
sylanbrc |
|- ( ph -> E! q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |