Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
8 |
|
plydiv.r |
|- R = ( F oF - ( G oF x. q ) ) |
9 |
|
plydiveu.q |
|- ( ph -> q e. ( Poly ` S ) ) |
10 |
|
plydiveu.qd |
|- ( ph -> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |
11 |
|
plydiveu.t |
|- T = ( F oF - ( G oF x. p ) ) |
12 |
|
plydiveu.p |
|- ( ph -> p e. ( Poly ` S ) ) |
13 |
|
plydiveu.pd |
|- ( ph -> ( T = 0p \/ ( deg ` T ) < ( deg ` G ) ) ) |
14 |
|
idd |
|- ( ph -> ( ( p oF - q ) = 0p -> ( p oF - q ) = 0p ) ) |
15 |
1 2 3 4 5 6 7 8
|
plydivlem2 |
|- ( ( ph /\ q e. ( Poly ` S ) ) -> R e. ( Poly ` S ) ) |
16 |
9 15
|
mpdan |
|- ( ph -> R e. ( Poly ` S ) ) |
17 |
1 2 3 4 5 6 7 11
|
plydivlem2 |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> T e. ( Poly ` S ) ) |
18 |
12 17
|
mpdan |
|- ( ph -> T e. ( Poly ` S ) ) |
19 |
16 18 1 2 4
|
plysub |
|- ( ph -> ( R oF - T ) e. ( Poly ` S ) ) |
20 |
|
dgrcl |
|- ( ( R oF - T ) e. ( Poly ` S ) -> ( deg ` ( R oF - T ) ) e. NN0 ) |
21 |
19 20
|
syl |
|- ( ph -> ( deg ` ( R oF - T ) ) e. NN0 ) |
22 |
21
|
nn0red |
|- ( ph -> ( deg ` ( R oF - T ) ) e. RR ) |
23 |
|
dgrcl |
|- ( T e. ( Poly ` S ) -> ( deg ` T ) e. NN0 ) |
24 |
18 23
|
syl |
|- ( ph -> ( deg ` T ) e. NN0 ) |
25 |
24
|
nn0red |
|- ( ph -> ( deg ` T ) e. RR ) |
26 |
|
dgrcl |
|- ( R e. ( Poly ` S ) -> ( deg ` R ) e. NN0 ) |
27 |
16 26
|
syl |
|- ( ph -> ( deg ` R ) e. NN0 ) |
28 |
27
|
nn0red |
|- ( ph -> ( deg ` R ) e. RR ) |
29 |
25 28
|
ifcld |
|- ( ph -> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) e. RR ) |
30 |
|
dgrcl |
|- ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) |
31 |
6 30
|
syl |
|- ( ph -> ( deg ` G ) e. NN0 ) |
32 |
31
|
nn0red |
|- ( ph -> ( deg ` G ) e. RR ) |
33 |
|
eqid |
|- ( deg ` R ) = ( deg ` R ) |
34 |
|
eqid |
|- ( deg ` T ) = ( deg ` T ) |
35 |
33 34
|
dgrsub |
|- ( ( R e. ( Poly ` S ) /\ T e. ( Poly ` S ) ) -> ( deg ` ( R oF - T ) ) <_ if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) ) |
36 |
16 18 35
|
syl2anc |
|- ( ph -> ( deg ` ( R oF - T ) ) <_ if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) ) |
37 |
|
eqid |
|- ( coeff ` T ) = ( coeff ` T ) |
38 |
34 37
|
dgrlt |
|- ( ( T e. ( Poly ` S ) /\ ( deg ` G ) e. NN0 ) -> ( ( T = 0p \/ ( deg ` T ) < ( deg ` G ) ) <-> ( ( deg ` T ) <_ ( deg ` G ) /\ ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) ) ) |
39 |
18 31 38
|
syl2anc |
|- ( ph -> ( ( T = 0p \/ ( deg ` T ) < ( deg ` G ) ) <-> ( ( deg ` T ) <_ ( deg ` G ) /\ ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) ) ) |
40 |
13 39
|
mpbid |
|- ( ph -> ( ( deg ` T ) <_ ( deg ` G ) /\ ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) ) |
41 |
40
|
simpld |
|- ( ph -> ( deg ` T ) <_ ( deg ` G ) ) |
42 |
|
eqid |
|- ( coeff ` R ) = ( coeff ` R ) |
43 |
33 42
|
dgrlt |
|- ( ( R e. ( Poly ` S ) /\ ( deg ` G ) e. NN0 ) -> ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) <-> ( ( deg ` R ) <_ ( deg ` G ) /\ ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) ) ) |
44 |
16 31 43
|
syl2anc |
|- ( ph -> ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) <-> ( ( deg ` R ) <_ ( deg ` G ) /\ ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) ) ) |
45 |
10 44
|
mpbid |
|- ( ph -> ( ( deg ` R ) <_ ( deg ` G ) /\ ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) ) |
46 |
45
|
simpld |
|- ( ph -> ( deg ` R ) <_ ( deg ` G ) ) |
47 |
|
breq1 |
|- ( ( deg ` T ) = if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) -> ( ( deg ` T ) <_ ( deg ` G ) <-> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) <_ ( deg ` G ) ) ) |
48 |
|
breq1 |
|- ( ( deg ` R ) = if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) -> ( ( deg ` R ) <_ ( deg ` G ) <-> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) <_ ( deg ` G ) ) ) |
49 |
47 48
|
ifboth |
|- ( ( ( deg ` T ) <_ ( deg ` G ) /\ ( deg ` R ) <_ ( deg ` G ) ) -> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) <_ ( deg ` G ) ) |
50 |
41 46 49
|
syl2anc |
|- ( ph -> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) <_ ( deg ` G ) ) |
51 |
22 29 32 36 50
|
letrd |
|- ( ph -> ( deg ` ( R oF - T ) ) <_ ( deg ` G ) ) |
52 |
51
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( R oF - T ) ) <_ ( deg ` G ) ) |
53 |
12 9 1 2 4
|
plysub |
|- ( ph -> ( p oF - q ) e. ( Poly ` S ) ) |
54 |
|
dgrcl |
|- ( ( p oF - q ) e. ( Poly ` S ) -> ( deg ` ( p oF - q ) ) e. NN0 ) |
55 |
53 54
|
syl |
|- ( ph -> ( deg ` ( p oF - q ) ) e. NN0 ) |
56 |
|
nn0addge1 |
|- ( ( ( deg ` G ) e. RR /\ ( deg ` ( p oF - q ) ) e. NN0 ) -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
57 |
32 55 56
|
syl2anc |
|- ( ph -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
58 |
57
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
59 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
60 |
5 59
|
syl |
|- ( ph -> F : CC --> CC ) |
61 |
60
|
ffvelrnda |
|- ( ( ph /\ z e. CC ) -> ( F ` z ) e. CC ) |
62 |
6 9 1 2
|
plymul |
|- ( ph -> ( G oF x. q ) e. ( Poly ` S ) ) |
63 |
|
plyf |
|- ( ( G oF x. q ) e. ( Poly ` S ) -> ( G oF x. q ) : CC --> CC ) |
64 |
62 63
|
syl |
|- ( ph -> ( G oF x. q ) : CC --> CC ) |
65 |
64
|
ffvelrnda |
|- ( ( ph /\ z e. CC ) -> ( ( G oF x. q ) ` z ) e. CC ) |
66 |
6 12 1 2
|
plymul |
|- ( ph -> ( G oF x. p ) e. ( Poly ` S ) ) |
67 |
|
plyf |
|- ( ( G oF x. p ) e. ( Poly ` S ) -> ( G oF x. p ) : CC --> CC ) |
68 |
66 67
|
syl |
|- ( ph -> ( G oF x. p ) : CC --> CC ) |
69 |
68
|
ffvelrnda |
|- ( ( ph /\ z e. CC ) -> ( ( G oF x. p ) ` z ) e. CC ) |
70 |
61 65 69
|
nnncan1d |
|- ( ( ph /\ z e. CC ) -> ( ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) - ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) = ( ( ( G oF x. p ) ` z ) - ( ( G oF x. q ) ` z ) ) ) |
71 |
70
|
mpteq2dva |
|- ( ph -> ( z e. CC |-> ( ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) - ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) ) = ( z e. CC |-> ( ( ( G oF x. p ) ` z ) - ( ( G oF x. q ) ` z ) ) ) ) |
72 |
|
cnex |
|- CC e. _V |
73 |
72
|
a1i |
|- ( ph -> CC e. _V ) |
74 |
61 65
|
subcld |
|- ( ( ph /\ z e. CC ) -> ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) e. CC ) |
75 |
61 69
|
subcld |
|- ( ( ph /\ z e. CC ) -> ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) e. CC ) |
76 |
60
|
feqmptd |
|- ( ph -> F = ( z e. CC |-> ( F ` z ) ) ) |
77 |
64
|
feqmptd |
|- ( ph -> ( G oF x. q ) = ( z e. CC |-> ( ( G oF x. q ) ` z ) ) ) |
78 |
73 61 65 76 77
|
offval2 |
|- ( ph -> ( F oF - ( G oF x. q ) ) = ( z e. CC |-> ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) ) ) |
79 |
8 78
|
eqtrid |
|- ( ph -> R = ( z e. CC |-> ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) ) ) |
80 |
68
|
feqmptd |
|- ( ph -> ( G oF x. p ) = ( z e. CC |-> ( ( G oF x. p ) ` z ) ) ) |
81 |
73 61 69 76 80
|
offval2 |
|- ( ph -> ( F oF - ( G oF x. p ) ) = ( z e. CC |-> ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) ) |
82 |
11 81
|
eqtrid |
|- ( ph -> T = ( z e. CC |-> ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) ) |
83 |
73 74 75 79 82
|
offval2 |
|- ( ph -> ( R oF - T ) = ( z e. CC |-> ( ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) - ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) ) ) |
84 |
73 69 65 80 77
|
offval2 |
|- ( ph -> ( ( G oF x. p ) oF - ( G oF x. q ) ) = ( z e. CC |-> ( ( ( G oF x. p ) ` z ) - ( ( G oF x. q ) ` z ) ) ) ) |
85 |
71 83 84
|
3eqtr4d |
|- ( ph -> ( R oF - T ) = ( ( G oF x. p ) oF - ( G oF x. q ) ) ) |
86 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
87 |
6 86
|
syl |
|- ( ph -> G : CC --> CC ) |
88 |
|
plyf |
|- ( p e. ( Poly ` S ) -> p : CC --> CC ) |
89 |
12 88
|
syl |
|- ( ph -> p : CC --> CC ) |
90 |
|
plyf |
|- ( q e. ( Poly ` S ) -> q : CC --> CC ) |
91 |
9 90
|
syl |
|- ( ph -> q : CC --> CC ) |
92 |
|
subdi |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) |
93 |
92
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) |
94 |
73 87 89 91 93
|
caofdi |
|- ( ph -> ( G oF x. ( p oF - q ) ) = ( ( G oF x. p ) oF - ( G oF x. q ) ) ) |
95 |
85 94
|
eqtr4d |
|- ( ph -> ( R oF - T ) = ( G oF x. ( p oF - q ) ) ) |
96 |
95
|
fveq2d |
|- ( ph -> ( deg ` ( R oF - T ) ) = ( deg ` ( G oF x. ( p oF - q ) ) ) ) |
97 |
96
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( R oF - T ) ) = ( deg ` ( G oF x. ( p oF - q ) ) ) ) |
98 |
6
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> G e. ( Poly ` S ) ) |
99 |
7
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> G =/= 0p ) |
100 |
53
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( p oF - q ) e. ( Poly ` S ) ) |
101 |
|
simpr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( p oF - q ) =/= 0p ) |
102 |
|
eqid |
|- ( deg ` G ) = ( deg ` G ) |
103 |
|
eqid |
|- ( deg ` ( p oF - q ) ) = ( deg ` ( p oF - q ) ) |
104 |
102 103
|
dgrmul |
|- ( ( ( G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( ( p oF - q ) e. ( Poly ` S ) /\ ( p oF - q ) =/= 0p ) ) -> ( deg ` ( G oF x. ( p oF - q ) ) ) = ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
105 |
98 99 100 101 104
|
syl22anc |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( G oF x. ( p oF - q ) ) ) = ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
106 |
97 105
|
eqtrd |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( R oF - T ) ) = ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
107 |
58 106
|
breqtrrd |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` G ) <_ ( deg ` ( R oF - T ) ) ) |
108 |
22 32
|
letri3d |
|- ( ph -> ( ( deg ` ( R oF - T ) ) = ( deg ` G ) <-> ( ( deg ` ( R oF - T ) ) <_ ( deg ` G ) /\ ( deg ` G ) <_ ( deg ` ( R oF - T ) ) ) ) ) |
109 |
108
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( ( deg ` ( R oF - T ) ) = ( deg ` G ) <-> ( ( deg ` ( R oF - T ) ) <_ ( deg ` G ) /\ ( deg ` G ) <_ ( deg ` ( R oF - T ) ) ) ) ) |
110 |
52 107 109
|
mpbir2and |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( R oF - T ) ) = ( deg ` G ) ) |
111 |
110
|
fveq2d |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) ) |
112 |
42 37
|
coesub |
|- ( ( R e. ( Poly ` S ) /\ T e. ( Poly ` S ) ) -> ( coeff ` ( R oF - T ) ) = ( ( coeff ` R ) oF - ( coeff ` T ) ) ) |
113 |
16 18 112
|
syl2anc |
|- ( ph -> ( coeff ` ( R oF - T ) ) = ( ( coeff ` R ) oF - ( coeff ` T ) ) ) |
114 |
113
|
fveq1d |
|- ( ph -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) = ( ( ( coeff ` R ) oF - ( coeff ` T ) ) ` ( deg ` G ) ) ) |
115 |
42
|
coef3 |
|- ( R e. ( Poly ` S ) -> ( coeff ` R ) : NN0 --> CC ) |
116 |
|
ffn |
|- ( ( coeff ` R ) : NN0 --> CC -> ( coeff ` R ) Fn NN0 ) |
117 |
16 115 116
|
3syl |
|- ( ph -> ( coeff ` R ) Fn NN0 ) |
118 |
37
|
coef3 |
|- ( T e. ( Poly ` S ) -> ( coeff ` T ) : NN0 --> CC ) |
119 |
|
ffn |
|- ( ( coeff ` T ) : NN0 --> CC -> ( coeff ` T ) Fn NN0 ) |
120 |
18 118 119
|
3syl |
|- ( ph -> ( coeff ` T ) Fn NN0 ) |
121 |
|
nn0ex |
|- NN0 e. _V |
122 |
121
|
a1i |
|- ( ph -> NN0 e. _V ) |
123 |
|
inidm |
|- ( NN0 i^i NN0 ) = NN0 |
124 |
45
|
simprd |
|- ( ph -> ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) |
125 |
124
|
adantr |
|- ( ( ph /\ ( deg ` G ) e. NN0 ) -> ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) |
126 |
40
|
simprd |
|- ( ph -> ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) |
127 |
126
|
adantr |
|- ( ( ph /\ ( deg ` G ) e. NN0 ) -> ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) |
128 |
117 120 122 122 123 125 127
|
ofval |
|- ( ( ph /\ ( deg ` G ) e. NN0 ) -> ( ( ( coeff ` R ) oF - ( coeff ` T ) ) ` ( deg ` G ) ) = ( 0 - 0 ) ) |
129 |
31 128
|
mpdan |
|- ( ph -> ( ( ( coeff ` R ) oF - ( coeff ` T ) ) ` ( deg ` G ) ) = ( 0 - 0 ) ) |
130 |
114 129
|
eqtrd |
|- ( ph -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) = ( 0 - 0 ) ) |
131 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
132 |
130 131
|
eqtrdi |
|- ( ph -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) = 0 ) |
133 |
132
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) = 0 ) |
134 |
111 133
|
eqtrd |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = 0 ) |
135 |
|
eqid |
|- ( deg ` ( R oF - T ) ) = ( deg ` ( R oF - T ) ) |
136 |
|
eqid |
|- ( coeff ` ( R oF - T ) ) = ( coeff ` ( R oF - T ) ) |
137 |
135 136
|
dgreq0 |
|- ( ( R oF - T ) e. ( Poly ` S ) -> ( ( R oF - T ) = 0p <-> ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = 0 ) ) |
138 |
19 137
|
syl |
|- ( ph -> ( ( R oF - T ) = 0p <-> ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = 0 ) ) |
139 |
138
|
biimpar |
|- ( ( ph /\ ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = 0 ) -> ( R oF - T ) = 0p ) |
140 |
134 139
|
syldan |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( R oF - T ) = 0p ) |
141 |
140
|
ex |
|- ( ph -> ( ( p oF - q ) =/= 0p -> ( R oF - T ) = 0p ) ) |
142 |
|
plymul0or |
|- ( ( G e. ( Poly ` S ) /\ ( p oF - q ) e. ( Poly ` S ) ) -> ( ( G oF x. ( p oF - q ) ) = 0p <-> ( G = 0p \/ ( p oF - q ) = 0p ) ) ) |
143 |
6 53 142
|
syl2anc |
|- ( ph -> ( ( G oF x. ( p oF - q ) ) = 0p <-> ( G = 0p \/ ( p oF - q ) = 0p ) ) ) |
144 |
95
|
eqeq1d |
|- ( ph -> ( ( R oF - T ) = 0p <-> ( G oF x. ( p oF - q ) ) = 0p ) ) |
145 |
7
|
neneqd |
|- ( ph -> -. G = 0p ) |
146 |
|
biorf |
|- ( -. G = 0p -> ( ( p oF - q ) = 0p <-> ( G = 0p \/ ( p oF - q ) = 0p ) ) ) |
147 |
145 146
|
syl |
|- ( ph -> ( ( p oF - q ) = 0p <-> ( G = 0p \/ ( p oF - q ) = 0p ) ) ) |
148 |
143 144 147
|
3bitr4d |
|- ( ph -> ( ( R oF - T ) = 0p <-> ( p oF - q ) = 0p ) ) |
149 |
141 148
|
sylibd |
|- ( ph -> ( ( p oF - q ) =/= 0p -> ( p oF - q ) = 0p ) ) |
150 |
14 149
|
pm2.61dne |
|- ( ph -> ( p oF - q ) = 0p ) |
151 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
152 |
150 151
|
eqtrdi |
|- ( ph -> ( p oF - q ) = ( CC X. { 0 } ) ) |
153 |
|
ofsubeq0 |
|- ( ( CC e. _V /\ p : CC --> CC /\ q : CC --> CC ) -> ( ( p oF - q ) = ( CC X. { 0 } ) <-> p = q ) ) |
154 |
72 89 91 153
|
mp3an2i |
|- ( ph -> ( ( p oF - q ) = ( CC X. { 0 } ) <-> p = q ) ) |
155 |
152 154
|
mpbid |
|- ( ph -> p = q ) |