| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
| 4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
| 5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
| 6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
| 7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
| 8 |
|
plydiv.r |
|- R = ( F oF - ( G oF x. q ) ) |
| 9 |
|
plydiveu.q |
|- ( ph -> q e. ( Poly ` S ) ) |
| 10 |
|
plydiveu.qd |
|- ( ph -> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |
| 11 |
|
plydiveu.t |
|- T = ( F oF - ( G oF x. p ) ) |
| 12 |
|
plydiveu.p |
|- ( ph -> p e. ( Poly ` S ) ) |
| 13 |
|
plydiveu.pd |
|- ( ph -> ( T = 0p \/ ( deg ` T ) < ( deg ` G ) ) ) |
| 14 |
|
idd |
|- ( ph -> ( ( p oF - q ) = 0p -> ( p oF - q ) = 0p ) ) |
| 15 |
1 2 3 4 5 6 7 8
|
plydivlem2 |
|- ( ( ph /\ q e. ( Poly ` S ) ) -> R e. ( Poly ` S ) ) |
| 16 |
9 15
|
mpdan |
|- ( ph -> R e. ( Poly ` S ) ) |
| 17 |
1 2 3 4 5 6 7 11
|
plydivlem2 |
|- ( ( ph /\ p e. ( Poly ` S ) ) -> T e. ( Poly ` S ) ) |
| 18 |
12 17
|
mpdan |
|- ( ph -> T e. ( Poly ` S ) ) |
| 19 |
16 18 1 2 4
|
plysub |
|- ( ph -> ( R oF - T ) e. ( Poly ` S ) ) |
| 20 |
|
dgrcl |
|- ( ( R oF - T ) e. ( Poly ` S ) -> ( deg ` ( R oF - T ) ) e. NN0 ) |
| 21 |
19 20
|
syl |
|- ( ph -> ( deg ` ( R oF - T ) ) e. NN0 ) |
| 22 |
21
|
nn0red |
|- ( ph -> ( deg ` ( R oF - T ) ) e. RR ) |
| 23 |
|
dgrcl |
|- ( T e. ( Poly ` S ) -> ( deg ` T ) e. NN0 ) |
| 24 |
18 23
|
syl |
|- ( ph -> ( deg ` T ) e. NN0 ) |
| 25 |
24
|
nn0red |
|- ( ph -> ( deg ` T ) e. RR ) |
| 26 |
|
dgrcl |
|- ( R e. ( Poly ` S ) -> ( deg ` R ) e. NN0 ) |
| 27 |
16 26
|
syl |
|- ( ph -> ( deg ` R ) e. NN0 ) |
| 28 |
27
|
nn0red |
|- ( ph -> ( deg ` R ) e. RR ) |
| 29 |
25 28
|
ifcld |
|- ( ph -> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) e. RR ) |
| 30 |
|
dgrcl |
|- ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) |
| 31 |
6 30
|
syl |
|- ( ph -> ( deg ` G ) e. NN0 ) |
| 32 |
31
|
nn0red |
|- ( ph -> ( deg ` G ) e. RR ) |
| 33 |
|
eqid |
|- ( deg ` R ) = ( deg ` R ) |
| 34 |
|
eqid |
|- ( deg ` T ) = ( deg ` T ) |
| 35 |
33 34
|
dgrsub |
|- ( ( R e. ( Poly ` S ) /\ T e. ( Poly ` S ) ) -> ( deg ` ( R oF - T ) ) <_ if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) ) |
| 36 |
16 18 35
|
syl2anc |
|- ( ph -> ( deg ` ( R oF - T ) ) <_ if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) ) |
| 37 |
|
eqid |
|- ( coeff ` T ) = ( coeff ` T ) |
| 38 |
34 37
|
dgrlt |
|- ( ( T e. ( Poly ` S ) /\ ( deg ` G ) e. NN0 ) -> ( ( T = 0p \/ ( deg ` T ) < ( deg ` G ) ) <-> ( ( deg ` T ) <_ ( deg ` G ) /\ ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) ) ) |
| 39 |
18 31 38
|
syl2anc |
|- ( ph -> ( ( T = 0p \/ ( deg ` T ) < ( deg ` G ) ) <-> ( ( deg ` T ) <_ ( deg ` G ) /\ ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) ) ) |
| 40 |
13 39
|
mpbid |
|- ( ph -> ( ( deg ` T ) <_ ( deg ` G ) /\ ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) ) |
| 41 |
40
|
simpld |
|- ( ph -> ( deg ` T ) <_ ( deg ` G ) ) |
| 42 |
|
eqid |
|- ( coeff ` R ) = ( coeff ` R ) |
| 43 |
33 42
|
dgrlt |
|- ( ( R e. ( Poly ` S ) /\ ( deg ` G ) e. NN0 ) -> ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) <-> ( ( deg ` R ) <_ ( deg ` G ) /\ ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) ) ) |
| 44 |
16 31 43
|
syl2anc |
|- ( ph -> ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) <-> ( ( deg ` R ) <_ ( deg ` G ) /\ ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) ) ) |
| 45 |
10 44
|
mpbid |
|- ( ph -> ( ( deg ` R ) <_ ( deg ` G ) /\ ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) ) |
| 46 |
45
|
simpld |
|- ( ph -> ( deg ` R ) <_ ( deg ` G ) ) |
| 47 |
|
breq1 |
|- ( ( deg ` T ) = if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) -> ( ( deg ` T ) <_ ( deg ` G ) <-> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) <_ ( deg ` G ) ) ) |
| 48 |
|
breq1 |
|- ( ( deg ` R ) = if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) -> ( ( deg ` R ) <_ ( deg ` G ) <-> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) <_ ( deg ` G ) ) ) |
| 49 |
47 48
|
ifboth |
|- ( ( ( deg ` T ) <_ ( deg ` G ) /\ ( deg ` R ) <_ ( deg ` G ) ) -> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) <_ ( deg ` G ) ) |
| 50 |
41 46 49
|
syl2anc |
|- ( ph -> if ( ( deg ` R ) <_ ( deg ` T ) , ( deg ` T ) , ( deg ` R ) ) <_ ( deg ` G ) ) |
| 51 |
22 29 32 36 50
|
letrd |
|- ( ph -> ( deg ` ( R oF - T ) ) <_ ( deg ` G ) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( R oF - T ) ) <_ ( deg ` G ) ) |
| 53 |
12 9 1 2 4
|
plysub |
|- ( ph -> ( p oF - q ) e. ( Poly ` S ) ) |
| 54 |
|
dgrcl |
|- ( ( p oF - q ) e. ( Poly ` S ) -> ( deg ` ( p oF - q ) ) e. NN0 ) |
| 55 |
53 54
|
syl |
|- ( ph -> ( deg ` ( p oF - q ) ) e. NN0 ) |
| 56 |
|
nn0addge1 |
|- ( ( ( deg ` G ) e. RR /\ ( deg ` ( p oF - q ) ) e. NN0 ) -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
| 57 |
32 55 56
|
syl2anc |
|- ( ph -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
| 59 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
| 60 |
5 59
|
syl |
|- ( ph -> F : CC --> CC ) |
| 61 |
60
|
ffvelcdmda |
|- ( ( ph /\ z e. CC ) -> ( F ` z ) e. CC ) |
| 62 |
6 9 1 2
|
plymul |
|- ( ph -> ( G oF x. q ) e. ( Poly ` S ) ) |
| 63 |
|
plyf |
|- ( ( G oF x. q ) e. ( Poly ` S ) -> ( G oF x. q ) : CC --> CC ) |
| 64 |
62 63
|
syl |
|- ( ph -> ( G oF x. q ) : CC --> CC ) |
| 65 |
64
|
ffvelcdmda |
|- ( ( ph /\ z e. CC ) -> ( ( G oF x. q ) ` z ) e. CC ) |
| 66 |
6 12 1 2
|
plymul |
|- ( ph -> ( G oF x. p ) e. ( Poly ` S ) ) |
| 67 |
|
plyf |
|- ( ( G oF x. p ) e. ( Poly ` S ) -> ( G oF x. p ) : CC --> CC ) |
| 68 |
66 67
|
syl |
|- ( ph -> ( G oF x. p ) : CC --> CC ) |
| 69 |
68
|
ffvelcdmda |
|- ( ( ph /\ z e. CC ) -> ( ( G oF x. p ) ` z ) e. CC ) |
| 70 |
61 65 69
|
nnncan1d |
|- ( ( ph /\ z e. CC ) -> ( ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) - ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) = ( ( ( G oF x. p ) ` z ) - ( ( G oF x. q ) ` z ) ) ) |
| 71 |
70
|
mpteq2dva |
|- ( ph -> ( z e. CC |-> ( ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) - ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) ) = ( z e. CC |-> ( ( ( G oF x. p ) ` z ) - ( ( G oF x. q ) ` z ) ) ) ) |
| 72 |
|
cnex |
|- CC e. _V |
| 73 |
72
|
a1i |
|- ( ph -> CC e. _V ) |
| 74 |
61 65
|
subcld |
|- ( ( ph /\ z e. CC ) -> ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) e. CC ) |
| 75 |
61 69
|
subcld |
|- ( ( ph /\ z e. CC ) -> ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) e. CC ) |
| 76 |
60
|
feqmptd |
|- ( ph -> F = ( z e. CC |-> ( F ` z ) ) ) |
| 77 |
64
|
feqmptd |
|- ( ph -> ( G oF x. q ) = ( z e. CC |-> ( ( G oF x. q ) ` z ) ) ) |
| 78 |
73 61 65 76 77
|
offval2 |
|- ( ph -> ( F oF - ( G oF x. q ) ) = ( z e. CC |-> ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) ) ) |
| 79 |
8 78
|
eqtrid |
|- ( ph -> R = ( z e. CC |-> ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) ) ) |
| 80 |
68
|
feqmptd |
|- ( ph -> ( G oF x. p ) = ( z e. CC |-> ( ( G oF x. p ) ` z ) ) ) |
| 81 |
73 61 69 76 80
|
offval2 |
|- ( ph -> ( F oF - ( G oF x. p ) ) = ( z e. CC |-> ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) ) |
| 82 |
11 81
|
eqtrid |
|- ( ph -> T = ( z e. CC |-> ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) ) |
| 83 |
73 74 75 79 82
|
offval2 |
|- ( ph -> ( R oF - T ) = ( z e. CC |-> ( ( ( F ` z ) - ( ( G oF x. q ) ` z ) ) - ( ( F ` z ) - ( ( G oF x. p ) ` z ) ) ) ) ) |
| 84 |
73 69 65 80 77
|
offval2 |
|- ( ph -> ( ( G oF x. p ) oF - ( G oF x. q ) ) = ( z e. CC |-> ( ( ( G oF x. p ) ` z ) - ( ( G oF x. q ) ` z ) ) ) ) |
| 85 |
71 83 84
|
3eqtr4d |
|- ( ph -> ( R oF - T ) = ( ( G oF x. p ) oF - ( G oF x. q ) ) ) |
| 86 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
| 87 |
6 86
|
syl |
|- ( ph -> G : CC --> CC ) |
| 88 |
|
plyf |
|- ( p e. ( Poly ` S ) -> p : CC --> CC ) |
| 89 |
12 88
|
syl |
|- ( ph -> p : CC --> CC ) |
| 90 |
|
plyf |
|- ( q e. ( Poly ` S ) -> q : CC --> CC ) |
| 91 |
9 90
|
syl |
|- ( ph -> q : CC --> CC ) |
| 92 |
|
subdi |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) |
| 93 |
92
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) |
| 94 |
73 87 89 91 93
|
caofdi |
|- ( ph -> ( G oF x. ( p oF - q ) ) = ( ( G oF x. p ) oF - ( G oF x. q ) ) ) |
| 95 |
85 94
|
eqtr4d |
|- ( ph -> ( R oF - T ) = ( G oF x. ( p oF - q ) ) ) |
| 96 |
95
|
fveq2d |
|- ( ph -> ( deg ` ( R oF - T ) ) = ( deg ` ( G oF x. ( p oF - q ) ) ) ) |
| 97 |
96
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( R oF - T ) ) = ( deg ` ( G oF x. ( p oF - q ) ) ) ) |
| 98 |
6
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> G e. ( Poly ` S ) ) |
| 99 |
7
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> G =/= 0p ) |
| 100 |
53
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( p oF - q ) e. ( Poly ` S ) ) |
| 101 |
|
simpr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( p oF - q ) =/= 0p ) |
| 102 |
|
eqid |
|- ( deg ` G ) = ( deg ` G ) |
| 103 |
|
eqid |
|- ( deg ` ( p oF - q ) ) = ( deg ` ( p oF - q ) ) |
| 104 |
102 103
|
dgrmul |
|- ( ( ( G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( ( p oF - q ) e. ( Poly ` S ) /\ ( p oF - q ) =/= 0p ) ) -> ( deg ` ( G oF x. ( p oF - q ) ) ) = ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
| 105 |
98 99 100 101 104
|
syl22anc |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( G oF x. ( p oF - q ) ) ) = ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
| 106 |
97 105
|
eqtrd |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( R oF - T ) ) = ( ( deg ` G ) + ( deg ` ( p oF - q ) ) ) ) |
| 107 |
58 106
|
breqtrrd |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` G ) <_ ( deg ` ( R oF - T ) ) ) |
| 108 |
22 32
|
letri3d |
|- ( ph -> ( ( deg ` ( R oF - T ) ) = ( deg ` G ) <-> ( ( deg ` ( R oF - T ) ) <_ ( deg ` G ) /\ ( deg ` G ) <_ ( deg ` ( R oF - T ) ) ) ) ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( ( deg ` ( R oF - T ) ) = ( deg ` G ) <-> ( ( deg ` ( R oF - T ) ) <_ ( deg ` G ) /\ ( deg ` G ) <_ ( deg ` ( R oF - T ) ) ) ) ) |
| 110 |
52 107 109
|
mpbir2and |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( deg ` ( R oF - T ) ) = ( deg ` G ) ) |
| 111 |
110
|
fveq2d |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) ) |
| 112 |
42 37
|
coesub |
|- ( ( R e. ( Poly ` S ) /\ T e. ( Poly ` S ) ) -> ( coeff ` ( R oF - T ) ) = ( ( coeff ` R ) oF - ( coeff ` T ) ) ) |
| 113 |
16 18 112
|
syl2anc |
|- ( ph -> ( coeff ` ( R oF - T ) ) = ( ( coeff ` R ) oF - ( coeff ` T ) ) ) |
| 114 |
113
|
fveq1d |
|- ( ph -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) = ( ( ( coeff ` R ) oF - ( coeff ` T ) ) ` ( deg ` G ) ) ) |
| 115 |
42
|
coef3 |
|- ( R e. ( Poly ` S ) -> ( coeff ` R ) : NN0 --> CC ) |
| 116 |
|
ffn |
|- ( ( coeff ` R ) : NN0 --> CC -> ( coeff ` R ) Fn NN0 ) |
| 117 |
16 115 116
|
3syl |
|- ( ph -> ( coeff ` R ) Fn NN0 ) |
| 118 |
37
|
coef3 |
|- ( T e. ( Poly ` S ) -> ( coeff ` T ) : NN0 --> CC ) |
| 119 |
|
ffn |
|- ( ( coeff ` T ) : NN0 --> CC -> ( coeff ` T ) Fn NN0 ) |
| 120 |
18 118 119
|
3syl |
|- ( ph -> ( coeff ` T ) Fn NN0 ) |
| 121 |
|
nn0ex |
|- NN0 e. _V |
| 122 |
121
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 123 |
|
inidm |
|- ( NN0 i^i NN0 ) = NN0 |
| 124 |
45
|
simprd |
|- ( ph -> ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ ( deg ` G ) e. NN0 ) -> ( ( coeff ` R ) ` ( deg ` G ) ) = 0 ) |
| 126 |
40
|
simprd |
|- ( ph -> ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) |
| 127 |
126
|
adantr |
|- ( ( ph /\ ( deg ` G ) e. NN0 ) -> ( ( coeff ` T ) ` ( deg ` G ) ) = 0 ) |
| 128 |
117 120 122 122 123 125 127
|
ofval |
|- ( ( ph /\ ( deg ` G ) e. NN0 ) -> ( ( ( coeff ` R ) oF - ( coeff ` T ) ) ` ( deg ` G ) ) = ( 0 - 0 ) ) |
| 129 |
31 128
|
mpdan |
|- ( ph -> ( ( ( coeff ` R ) oF - ( coeff ` T ) ) ` ( deg ` G ) ) = ( 0 - 0 ) ) |
| 130 |
114 129
|
eqtrd |
|- ( ph -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) = ( 0 - 0 ) ) |
| 131 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 132 |
130 131
|
eqtrdi |
|- ( ph -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) = 0 ) |
| 133 |
132
|
adantr |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` G ) ) = 0 ) |
| 134 |
111 133
|
eqtrd |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = 0 ) |
| 135 |
|
eqid |
|- ( deg ` ( R oF - T ) ) = ( deg ` ( R oF - T ) ) |
| 136 |
|
eqid |
|- ( coeff ` ( R oF - T ) ) = ( coeff ` ( R oF - T ) ) |
| 137 |
135 136
|
dgreq0 |
|- ( ( R oF - T ) e. ( Poly ` S ) -> ( ( R oF - T ) = 0p <-> ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = 0 ) ) |
| 138 |
19 137
|
syl |
|- ( ph -> ( ( R oF - T ) = 0p <-> ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = 0 ) ) |
| 139 |
138
|
biimpar |
|- ( ( ph /\ ( ( coeff ` ( R oF - T ) ) ` ( deg ` ( R oF - T ) ) ) = 0 ) -> ( R oF - T ) = 0p ) |
| 140 |
134 139
|
syldan |
|- ( ( ph /\ ( p oF - q ) =/= 0p ) -> ( R oF - T ) = 0p ) |
| 141 |
140
|
ex |
|- ( ph -> ( ( p oF - q ) =/= 0p -> ( R oF - T ) = 0p ) ) |
| 142 |
|
plymul0or |
|- ( ( G e. ( Poly ` S ) /\ ( p oF - q ) e. ( Poly ` S ) ) -> ( ( G oF x. ( p oF - q ) ) = 0p <-> ( G = 0p \/ ( p oF - q ) = 0p ) ) ) |
| 143 |
6 53 142
|
syl2anc |
|- ( ph -> ( ( G oF x. ( p oF - q ) ) = 0p <-> ( G = 0p \/ ( p oF - q ) = 0p ) ) ) |
| 144 |
95
|
eqeq1d |
|- ( ph -> ( ( R oF - T ) = 0p <-> ( G oF x. ( p oF - q ) ) = 0p ) ) |
| 145 |
7
|
neneqd |
|- ( ph -> -. G = 0p ) |
| 146 |
|
biorf |
|- ( -. G = 0p -> ( ( p oF - q ) = 0p <-> ( G = 0p \/ ( p oF - q ) = 0p ) ) ) |
| 147 |
145 146
|
syl |
|- ( ph -> ( ( p oF - q ) = 0p <-> ( G = 0p \/ ( p oF - q ) = 0p ) ) ) |
| 148 |
143 144 147
|
3bitr4d |
|- ( ph -> ( ( R oF - T ) = 0p <-> ( p oF - q ) = 0p ) ) |
| 149 |
141 148
|
sylibd |
|- ( ph -> ( ( p oF - q ) =/= 0p -> ( p oF - q ) = 0p ) ) |
| 150 |
14 149
|
pm2.61dne |
|- ( ph -> ( p oF - q ) = 0p ) |
| 151 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
| 152 |
150 151
|
eqtrdi |
|- ( ph -> ( p oF - q ) = ( CC X. { 0 } ) ) |
| 153 |
|
ofsubeq0 |
|- ( ( CC e. _V /\ p : CC --> CC /\ q : CC --> CC ) -> ( ( p oF - q ) = ( CC X. { 0 } ) <-> p = q ) ) |
| 154 |
72 89 91 153
|
mp3an2i |
|- ( ph -> ( ( p oF - q ) = ( CC X. { 0 } ) <-> p = q ) ) |
| 155 |
152 154
|
mpbid |
|- ( ph -> p = q ) |