| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plydiv.pl |
|
| 2 |
|
plydiv.tm |
|
| 3 |
|
plydiv.rc |
|
| 4 |
|
plydiv.m1 |
|
| 5 |
|
plydiv.f |
|
| 6 |
|
plydiv.g |
|
| 7 |
|
plydiv.z |
|
| 8 |
|
plydiv.r |
|
| 9 |
|
plydiveu.q |
|
| 10 |
|
plydiveu.qd |
|
| 11 |
|
plydiveu.t |
|
| 12 |
|
plydiveu.p |
|
| 13 |
|
plydiveu.pd |
|
| 14 |
|
idd |
|
| 15 |
1 2 3 4 5 6 7 8
|
plydivlem2 |
|
| 16 |
9 15
|
mpdan |
|
| 17 |
1 2 3 4 5 6 7 11
|
plydivlem2 |
|
| 18 |
12 17
|
mpdan |
|
| 19 |
16 18 1 2 4
|
plysub |
|
| 20 |
|
dgrcl |
|
| 21 |
19 20
|
syl |
|
| 22 |
21
|
nn0red |
|
| 23 |
|
dgrcl |
|
| 24 |
18 23
|
syl |
|
| 25 |
24
|
nn0red |
|
| 26 |
|
dgrcl |
|
| 27 |
16 26
|
syl |
|
| 28 |
27
|
nn0red |
|
| 29 |
25 28
|
ifcld |
|
| 30 |
|
dgrcl |
|
| 31 |
6 30
|
syl |
|
| 32 |
31
|
nn0red |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
33 34
|
dgrsub |
|
| 36 |
16 18 35
|
syl2anc |
|
| 37 |
|
eqid |
|
| 38 |
34 37
|
dgrlt |
|
| 39 |
18 31 38
|
syl2anc |
|
| 40 |
13 39
|
mpbid |
|
| 41 |
40
|
simpld |
|
| 42 |
|
eqid |
|
| 43 |
33 42
|
dgrlt |
|
| 44 |
16 31 43
|
syl2anc |
|
| 45 |
10 44
|
mpbid |
|
| 46 |
45
|
simpld |
|
| 47 |
|
breq1 |
|
| 48 |
|
breq1 |
|
| 49 |
47 48
|
ifboth |
|
| 50 |
41 46 49
|
syl2anc |
|
| 51 |
22 29 32 36 50
|
letrd |
|
| 52 |
51
|
adantr |
|
| 53 |
12 9 1 2 4
|
plysub |
|
| 54 |
|
dgrcl |
|
| 55 |
53 54
|
syl |
|
| 56 |
|
nn0addge1 |
|
| 57 |
32 55 56
|
syl2anc |
|
| 58 |
57
|
adantr |
|
| 59 |
|
plyf |
|
| 60 |
5 59
|
syl |
|
| 61 |
60
|
ffvelcdmda |
|
| 62 |
6 9 1 2
|
plymul |
|
| 63 |
|
plyf |
|
| 64 |
62 63
|
syl |
|
| 65 |
64
|
ffvelcdmda |
|
| 66 |
6 12 1 2
|
plymul |
|
| 67 |
|
plyf |
|
| 68 |
66 67
|
syl |
|
| 69 |
68
|
ffvelcdmda |
|
| 70 |
61 65 69
|
nnncan1d |
|
| 71 |
70
|
mpteq2dva |
|
| 72 |
|
cnex |
|
| 73 |
72
|
a1i |
|
| 74 |
61 65
|
subcld |
|
| 75 |
61 69
|
subcld |
|
| 76 |
60
|
feqmptd |
|
| 77 |
64
|
feqmptd |
|
| 78 |
73 61 65 76 77
|
offval2 |
|
| 79 |
8 78
|
eqtrid |
|
| 80 |
68
|
feqmptd |
|
| 81 |
73 61 69 76 80
|
offval2 |
|
| 82 |
11 81
|
eqtrid |
|
| 83 |
73 74 75 79 82
|
offval2 |
|
| 84 |
73 69 65 80 77
|
offval2 |
|
| 85 |
71 83 84
|
3eqtr4d |
|
| 86 |
|
plyf |
|
| 87 |
6 86
|
syl |
|
| 88 |
|
plyf |
|
| 89 |
12 88
|
syl |
|
| 90 |
|
plyf |
|
| 91 |
9 90
|
syl |
|
| 92 |
|
subdi |
|
| 93 |
92
|
adantl |
|
| 94 |
73 87 89 91 93
|
caofdi |
|
| 95 |
85 94
|
eqtr4d |
|
| 96 |
95
|
fveq2d |
|
| 97 |
96
|
adantr |
|
| 98 |
6
|
adantr |
|
| 99 |
7
|
adantr |
|
| 100 |
53
|
adantr |
|
| 101 |
|
simpr |
|
| 102 |
|
eqid |
|
| 103 |
|
eqid |
|
| 104 |
102 103
|
dgrmul |
|
| 105 |
98 99 100 101 104
|
syl22anc |
|
| 106 |
97 105
|
eqtrd |
|
| 107 |
58 106
|
breqtrrd |
|
| 108 |
22 32
|
letri3d |
|
| 109 |
108
|
adantr |
|
| 110 |
52 107 109
|
mpbir2and |
|
| 111 |
110
|
fveq2d |
|
| 112 |
42 37
|
coesub |
|
| 113 |
16 18 112
|
syl2anc |
|
| 114 |
113
|
fveq1d |
|
| 115 |
42
|
coef3 |
|
| 116 |
|
ffn |
|
| 117 |
16 115 116
|
3syl |
|
| 118 |
37
|
coef3 |
|
| 119 |
|
ffn |
|
| 120 |
18 118 119
|
3syl |
|
| 121 |
|
nn0ex |
|
| 122 |
121
|
a1i |
|
| 123 |
|
inidm |
|
| 124 |
45
|
simprd |
|
| 125 |
124
|
adantr |
|
| 126 |
40
|
simprd |
|
| 127 |
126
|
adantr |
|
| 128 |
117 120 122 122 123 125 127
|
ofval |
|
| 129 |
31 128
|
mpdan |
|
| 130 |
114 129
|
eqtrd |
|
| 131 |
|
0m0e0 |
|
| 132 |
130 131
|
eqtrdi |
|
| 133 |
132
|
adantr |
|
| 134 |
111 133
|
eqtrd |
|
| 135 |
|
eqid |
|
| 136 |
|
eqid |
|
| 137 |
135 136
|
dgreq0 |
|
| 138 |
19 137
|
syl |
|
| 139 |
138
|
biimpar |
|
| 140 |
134 139
|
syldan |
|
| 141 |
140
|
ex |
|
| 142 |
|
plymul0or |
|
| 143 |
6 53 142
|
syl2anc |
|
| 144 |
95
|
eqeq1d |
|
| 145 |
7
|
neneqd |
|
| 146 |
|
biorf |
|
| 147 |
145 146
|
syl |
|
| 148 |
143 144 147
|
3bitr4d |
|
| 149 |
141 148
|
sylibd |
|
| 150 |
14 149
|
pm2.61dne |
|
| 151 |
|
df-0p |
|
| 152 |
150 151
|
eqtrdi |
|
| 153 |
|
ofsubeq0 |
|
| 154 |
72 89 91 153
|
mp3an2i |
|
| 155 |
152 154
|
mpbid |
|