Description: Lemma for plydivalg . (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plydiv.pl | |
|
plydiv.tm | |
||
plydiv.rc | |
||
plydiv.m1 | |
||
plydiv.f | |
||
plydiv.g | |
||
plydiv.z | |
||
plydiv.r | |
||
Assertion | plydivlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plydiv.pl | |
|
2 | plydiv.tm | |
|
3 | plydiv.rc | |
|
4 | plydiv.m1 | |
|
5 | plydiv.f | |
|
6 | plydiv.g | |
|
7 | plydiv.z | |
|
8 | plydiv.r | |
|
9 | 5 | adantr | |
10 | 6 | adantr | |
11 | simpr | |
|
12 | 1 | adantlr | |
13 | 2 | adantlr | |
14 | 10 11 12 13 | plymul | |
15 | 4 | adantr | |
16 | 9 14 12 13 15 | plysub | |
17 | 8 16 | eqeltrid | |