Metamath Proof Explorer


Theorem plydivlem2

Description: Lemma for plydivalg . (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φxSySx+yS
plydiv.tm φxSySxyS
plydiv.rc φxSx01xS
plydiv.m1 φ1S
plydiv.f φFPolyS
plydiv.g φGPolyS
plydiv.z φG0𝑝
plydiv.r R=FfG×fq
Assertion plydivlem2 φqPolySRPolyS

Proof

Step Hyp Ref Expression
1 plydiv.pl φxSySx+yS
2 plydiv.tm φxSySxyS
3 plydiv.rc φxSx01xS
4 plydiv.m1 φ1S
5 plydiv.f φFPolyS
6 plydiv.g φGPolyS
7 plydiv.z φG0𝑝
8 plydiv.r R=FfG×fq
9 5 adantr φqPolySFPolyS
10 6 adantr φqPolySGPolyS
11 simpr φqPolySqPolyS
12 1 adantlr φqPolySxSySx+yS
13 2 adantlr φqPolySxSySxyS
14 10 11 12 13 plymul φqPolySG×fqPolyS
15 4 adantr φqPolyS1S
16 9 14 12 13 15 plysub φqPolySFfG×fqPolyS
17 8 16 eqeltrid φqPolySRPolyS