| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plydiv.pl |
|
| 2 |
|
plydiv.tm |
|
| 3 |
|
plydiv.rc |
|
| 4 |
|
plydiv.m1 |
|
| 5 |
|
plydiv.f |
|
| 6 |
|
plydiv.g |
|
| 7 |
|
plydiv.z |
|
| 8 |
|
plydiv.r |
|
| 9 |
|
plydiv.0 |
|
| 10 |
|
plybss |
|
| 11 |
|
ply0 |
|
| 12 |
5 10 11
|
3syl |
|
| 13 |
|
cnex |
|
| 14 |
13
|
a1i |
|
| 15 |
|
plyf |
|
| 16 |
|
ffn |
|
| 17 |
5 15 16
|
3syl |
|
| 18 |
|
plyf |
|
| 19 |
|
ffn |
|
| 20 |
6 18 19
|
3syl |
|
| 21 |
|
plyf |
|
| 22 |
|
ffn |
|
| 23 |
12 21 22
|
3syl |
|
| 24 |
|
inidm |
|
| 25 |
20 23 14 14 24
|
offn |
|
| 26 |
|
eqidd |
|
| 27 |
|
eqidd |
|
| 28 |
|
0pval |
|
| 29 |
28
|
adantl |
|
| 30 |
20 23 14 14 24 27 29
|
ofval |
|
| 31 |
6 18
|
syl |
|
| 32 |
31
|
ffvelcdmda |
|
| 33 |
32
|
mul01d |
|
| 34 |
30 33
|
eqtrd |
|
| 35 |
5 15
|
syl |
|
| 36 |
35
|
ffvelcdmda |
|
| 37 |
36
|
subid1d |
|
| 38 |
14 17 25 17 26 34 37
|
offveq |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
38
|
fveq2d |
|
| 41 |
|
dgrcl |
|
| 42 |
6 41
|
syl |
|
| 43 |
42
|
nn0red |
|
| 44 |
43
|
recnd |
|
| 45 |
44
|
addlidd |
|
| 46 |
45
|
eqcomd |
|
| 47 |
40 46
|
breq12d |
|
| 48 |
|
dgrcl |
|
| 49 |
5 48
|
syl |
|
| 50 |
49
|
nn0red |
|
| 51 |
|
0red |
|
| 52 |
50 43 51
|
ltsubaddd |
|
| 53 |
47 52
|
bitr4d |
|
| 54 |
39 53
|
orbi12d |
|
| 55 |
9 54
|
mpbird |
|
| 56 |
|
oveq2 |
|
| 57 |
56
|
oveq2d |
|
| 58 |
8 57
|
eqtrid |
|
| 59 |
58
|
eqeq1d |
|
| 60 |
58
|
fveq2d |
|
| 61 |
60
|
breq1d |
|
| 62 |
59 61
|
orbi12d |
|
| 63 |
62
|
rspcev |
|
| 64 |
12 55 63
|
syl2anc |
|