| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plydiv.pl |
|
| 2 |
|
plydiv.tm |
|
| 3 |
|
plydiv.rc |
|
| 4 |
|
plydiv.m1 |
|
| 5 |
|
plydiv.f |
|
| 6 |
|
plydiv.g |
|
| 7 |
|
plydiv.z |
|
| 8 |
|
plydiv.r |
|
| 9 |
|
plydiv.d |
|
| 10 |
|
plydiv.e |
|
| 11 |
|
plydiv.fz |
|
| 12 |
|
plydiv.u |
|
| 13 |
|
plydiv.h |
|
| 14 |
|
plydiv.al |
|
| 15 |
|
plydiv.a |
|
| 16 |
|
plydiv.b |
|
| 17 |
|
plydiv.m |
|
| 18 |
|
plydiv.n |
|
| 19 |
|
plybss |
|
| 20 |
5 19
|
syl |
|
| 21 |
1 2 3 4
|
plydivlem1 |
|
| 22 |
15
|
coef2 |
|
| 23 |
5 21 22
|
syl2anc |
|
| 24 |
|
dgrcl |
|
| 25 |
5 24
|
syl |
|
| 26 |
17 25
|
eqeltrid |
|
| 27 |
23 26
|
ffvelcdmd |
|
| 28 |
20 27
|
sseldd |
|
| 29 |
16
|
coef2 |
|
| 30 |
6 21 29
|
syl2anc |
|
| 31 |
|
dgrcl |
|
| 32 |
6 31
|
syl |
|
| 33 |
18 32
|
eqeltrid |
|
| 34 |
30 33
|
ffvelcdmd |
|
| 35 |
20 34
|
sseldd |
|
| 36 |
18 16
|
dgreq0 |
|
| 37 |
6 36
|
syl |
|
| 38 |
37
|
necon3bid |
|
| 39 |
7 38
|
mpbid |
|
| 40 |
28 35 39
|
divrecd |
|
| 41 |
|
fvex |
|
| 42 |
|
eleq1 |
|
| 43 |
|
neeq1 |
|
| 44 |
42 43
|
anbi12d |
|
| 45 |
44
|
anbi2d |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
eleq1d |
|
| 48 |
45 47
|
imbi12d |
|
| 49 |
41 48 3
|
vtocl |
|
| 50 |
49
|
ex |
|
| 51 |
34 39 50
|
mp2and |
|
| 52 |
2 27 51
|
caovcld |
|
| 53 |
40 52
|
eqeltrd |
|
| 54 |
13
|
ply1term |
|
| 55 |
20 53 9 54
|
syl3anc |
|
| 56 |
55
|
adantr |
|
| 57 |
|
simpr |
|
| 58 |
1
|
adantlr |
|
| 59 |
56 57 58
|
plyadd |
|
| 60 |
|
cnex |
|
| 61 |
60
|
a1i |
|
| 62 |
5
|
adantr |
|
| 63 |
|
plyf |
|
| 64 |
62 63
|
syl |
|
| 65 |
|
mulcl |
|
| 66 |
65
|
adantl |
|
| 67 |
|
plyf |
|
| 68 |
56 67
|
syl |
|
| 69 |
6
|
adantr |
|
| 70 |
|
plyf |
|
| 71 |
69 70
|
syl |
|
| 72 |
|
inidm |
|
| 73 |
66 68 71 61 61 72
|
off |
|
| 74 |
|
plyf |
|
| 75 |
74
|
adantl |
|
| 76 |
66 71 75 61 61 72
|
off |
|
| 77 |
|
subsub4 |
|
| 78 |
77
|
adantl |
|
| 79 |
61 64 73 76 78
|
caofass |
|
| 80 |
|
mulcom |
|
| 81 |
80
|
adantl |
|
| 82 |
61 68 71 81
|
caofcom |
|
| 83 |
82
|
oveq1d |
|
| 84 |
|
adddi |
|
| 85 |
84
|
adantl |
|
| 86 |
61 71 68 75 85
|
caofdi |
|
| 87 |
83 86
|
eqtr4d |
|
| 88 |
87
|
oveq2d |
|
| 89 |
79 88
|
eqtrd |
|
| 90 |
89
|
eqeq1d |
|
| 91 |
89
|
fveq2d |
|
| 92 |
91
|
breq1d |
|
| 93 |
90 92
|
orbi12d |
|
| 94 |
93
|
biimpa |
|
| 95 |
|
oveq2 |
|
| 96 |
95
|
oveq2d |
|
| 97 |
8 96
|
eqtrid |
|
| 98 |
97
|
eqeq1d |
|
| 99 |
97
|
fveq2d |
|
| 100 |
99
|
breq1d |
|
| 101 |
98 100
|
orbi12d |
|
| 102 |
101
|
rspcev |
|
| 103 |
59 94 102
|
syl2an2r |
|
| 104 |
55 6 1 2
|
plymul |
|
| 105 |
|
eqid |
|
| 106 |
17 105
|
dgrsub |
|
| 107 |
5 104 106
|
syl2anc |
|
| 108 |
17 15
|
dgreq0 |
|
| 109 |
5 108
|
syl |
|
| 110 |
109
|
necon3bid |
|
| 111 |
11 110
|
mpbid |
|
| 112 |
28 35 111 39
|
divne0d |
|
| 113 |
20 53
|
sseldd |
|
| 114 |
13
|
coe1term |
|
| 115 |
113 9 9 114
|
syl3anc |
|
| 116 |
|
eqid |
|
| 117 |
116
|
iftruei |
|
| 118 |
115 117
|
eqtrdi |
|
| 119 |
|
c0ex |
|
| 120 |
119
|
fvconst2 |
|
| 121 |
9 120
|
syl |
|
| 122 |
112 118 121
|
3netr4d |
|
| 123 |
|
fveq2 |
|
| 124 |
|
coe0 |
|
| 125 |
123 124
|
eqtrdi |
|
| 126 |
125
|
fveq1d |
|
| 127 |
126
|
necon3i |
|
| 128 |
122 127
|
syl |
|
| 129 |
|
eqid |
|
| 130 |
129 18
|
dgrmul |
|
| 131 |
55 128 6 7 130
|
syl22anc |
|
| 132 |
13
|
dgr1term |
|
| 133 |
113 112 9 132
|
syl3anc |
|
| 134 |
133 10
|
eqtr4d |
|
| 135 |
134
|
oveq1d |
|
| 136 |
26
|
nn0cnd |
|
| 137 |
33
|
nn0cnd |
|
| 138 |
136 137
|
npcand |
|
| 139 |
135 138
|
eqtrd |
|
| 140 |
131 139
|
eqtrd |
|
| 141 |
140
|
ifeq1d |
|
| 142 |
|
ifid |
|
| 143 |
141 142
|
eqtrdi |
|
| 144 |
107 143
|
breqtrd |
|
| 145 |
|
eqid |
|
| 146 |
15 145
|
coesub |
|
| 147 |
5 104 146
|
syl2anc |
|
| 148 |
147
|
fveq1d |
|
| 149 |
15
|
coef3 |
|
| 150 |
|
ffn |
|
| 151 |
5 149 150
|
3syl |
|
| 152 |
145
|
coef3 |
|
| 153 |
|
ffn |
|
| 154 |
104 152 153
|
3syl |
|
| 155 |
|
nn0ex |
|
| 156 |
155
|
a1i |
|
| 157 |
|
inidm |
|
| 158 |
|
eqidd |
|
| 159 |
|
eqid |
|
| 160 |
159 16 129 18
|
coemulhi |
|
| 161 |
55 6 160
|
syl2anc |
|
| 162 |
139
|
fveq2d |
|
| 163 |
133
|
fveq2d |
|
| 164 |
163 118
|
eqtrd |
|
| 165 |
164
|
oveq1d |
|
| 166 |
28 35 39
|
divcan1d |
|
| 167 |
165 166
|
eqtrd |
|
| 168 |
161 162 167
|
3eqtr3d |
|
| 169 |
168
|
adantr |
|
| 170 |
151 154 156 156 157 158 169
|
ofval |
|
| 171 |
26 170
|
mpdan |
|
| 172 |
28
|
subidd |
|
| 173 |
148 171 172
|
3eqtrd |
|
| 174 |
5 104 1 2 4
|
plysub |
|
| 175 |
|
dgrcl |
|
| 176 |
174 175
|
syl |
|
| 177 |
176
|
nn0red |
|
| 178 |
26
|
nn0red |
|
| 179 |
33
|
nn0red |
|
| 180 |
177 178 179
|
ltsub1d |
|
| 181 |
10
|
breq2d |
|
| 182 |
180 181
|
bitrd |
|
| 183 |
182
|
orbi2d |
|
| 184 |
|
eqid |
|
| 185 |
|
eqid |
|
| 186 |
184 185
|
dgrlt |
|
| 187 |
174 26 186
|
syl2anc |
|
| 188 |
183 187
|
bitr3d |
|
| 189 |
144 173 188
|
mpbir2and |
|
| 190 |
|
eqeq1 |
|
| 191 |
|
fveq2 |
|
| 192 |
191
|
oveq1d |
|
| 193 |
192
|
breq1d |
|
| 194 |
190 193
|
orbi12d |
|
| 195 |
|
oveq1 |
|
| 196 |
12 195
|
eqtrid |
|
| 197 |
196
|
eqeq1d |
|
| 198 |
196
|
fveq2d |
|
| 199 |
198
|
breq1d |
|
| 200 |
197 199
|
orbi12d |
|
| 201 |
200
|
rexbidv |
|
| 202 |
194 201
|
imbi12d |
|
| 203 |
202 14 174
|
rspcdva |
|
| 204 |
189 203
|
mpd |
|
| 205 |
103 204
|
r19.29a |
|