| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plydiv.pl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 2 |
|
plydiv.tm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
| 3 |
|
plydiv.rc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ 𝑆 ) |
| 4 |
|
plydiv.m1 |
⊢ ( 𝜑 → - 1 ∈ 𝑆 ) |
| 5 |
|
plydiv.f |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 6 |
|
plydiv.g |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 7 |
|
plydiv.z |
⊢ ( 𝜑 → 𝐺 ≠ 0𝑝 ) |
| 8 |
|
plydiv.r |
⊢ 𝑅 = ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑞 ) ) |
| 9 |
|
plydiv.d |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 10 |
|
plydiv.e |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) = 𝐷 ) |
| 11 |
|
plydiv.fz |
⊢ ( 𝜑 → 𝐹 ≠ 0𝑝 ) |
| 12 |
|
plydiv.u |
⊢ 𝑈 = ( 𝑓 ∘f − ( 𝐺 ∘f · 𝑝 ) ) |
| 13 |
|
plydiv.h |
⊢ 𝐻 = ( 𝑧 ∈ ℂ ↦ ( ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) · ( 𝑧 ↑ 𝐷 ) ) ) |
| 14 |
|
plydiv.al |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑓 = 0𝑝 ∨ ( ( deg ‘ 𝑓 ) − 𝑁 ) < 𝐷 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( 𝑈 = 0𝑝 ∨ ( deg ‘ 𝑈 ) < 𝑁 ) ) ) |
| 15 |
|
plydiv.a |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
| 16 |
|
plydiv.b |
⊢ 𝐵 = ( coeff ‘ 𝐺 ) |
| 17 |
|
plydiv.m |
⊢ 𝑀 = ( deg ‘ 𝐹 ) |
| 18 |
|
plydiv.n |
⊢ 𝑁 = ( deg ‘ 𝐺 ) |
| 19 |
|
plybss |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ ) |
| 20 |
5 19
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 21 |
1 2 3 4
|
plydivlem1 |
⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 22 |
15
|
coef2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ 𝑆 ) |
| 23 |
5 21 22
|
syl2anc |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ 𝑆 ) |
| 24 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 25 |
5 24
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 26 |
17 25
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 27 |
23 26
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ∈ 𝑆 ) |
| 28 |
20 27
|
sseldd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) |
| 29 |
16
|
coef2 |
⊢ ( ( 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → 𝐵 : ℕ0 ⟶ 𝑆 ) |
| 30 |
6 21 29
|
syl2anc |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ 𝑆 ) |
| 31 |
|
dgrcl |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
| 32 |
6 31
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
| 33 |
18 32
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 34 |
30 33
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑁 ) ∈ 𝑆 ) |
| 35 |
20 34
|
sseldd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑁 ) ∈ ℂ ) |
| 36 |
18 16
|
dgreq0 |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( 𝐺 = 0𝑝 ↔ ( 𝐵 ‘ 𝑁 ) = 0 ) ) |
| 37 |
6 36
|
syl |
⊢ ( 𝜑 → ( 𝐺 = 0𝑝 ↔ ( 𝐵 ‘ 𝑁 ) = 0 ) ) |
| 38 |
37
|
necon3bid |
⊢ ( 𝜑 → ( 𝐺 ≠ 0𝑝 ↔ ( 𝐵 ‘ 𝑁 ) ≠ 0 ) ) |
| 39 |
7 38
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑁 ) ≠ 0 ) |
| 40 |
28 35 39
|
divrecd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) = ( ( 𝐴 ‘ 𝑀 ) · ( 1 / ( 𝐵 ‘ 𝑁 ) ) ) ) |
| 41 |
|
fvex |
⊢ ( 𝐵 ‘ 𝑁 ) ∈ V |
| 42 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐵 ‘ 𝑁 ) → ( 𝑥 ∈ 𝑆 ↔ ( 𝐵 ‘ 𝑁 ) ∈ 𝑆 ) ) |
| 43 |
|
neeq1 |
⊢ ( 𝑥 = ( 𝐵 ‘ 𝑁 ) → ( 𝑥 ≠ 0 ↔ ( 𝐵 ‘ 𝑁 ) ≠ 0 ) ) |
| 44 |
42 43
|
anbi12d |
⊢ ( 𝑥 = ( 𝐵 ‘ 𝑁 ) → ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0 ) ↔ ( ( 𝐵 ‘ 𝑁 ) ∈ 𝑆 ∧ ( 𝐵 ‘ 𝑁 ) ≠ 0 ) ) ) |
| 45 |
44
|
anbi2d |
⊢ ( 𝑥 = ( 𝐵 ‘ 𝑁 ) → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0 ) ) ↔ ( 𝜑 ∧ ( ( 𝐵 ‘ 𝑁 ) ∈ 𝑆 ∧ ( 𝐵 ‘ 𝑁 ) ≠ 0 ) ) ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐵 ‘ 𝑁 ) → ( 1 / 𝑥 ) = ( 1 / ( 𝐵 ‘ 𝑁 ) ) ) |
| 47 |
46
|
eleq1d |
⊢ ( 𝑥 = ( 𝐵 ‘ 𝑁 ) → ( ( 1 / 𝑥 ) ∈ 𝑆 ↔ ( 1 / ( 𝐵 ‘ 𝑁 ) ) ∈ 𝑆 ) ) |
| 48 |
45 47
|
imbi12d |
⊢ ( 𝑥 = ( 𝐵 ‘ 𝑁 ) → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝜑 ∧ ( ( 𝐵 ‘ 𝑁 ) ∈ 𝑆 ∧ ( 𝐵 ‘ 𝑁 ) ≠ 0 ) ) → ( 1 / ( 𝐵 ‘ 𝑁 ) ) ∈ 𝑆 ) ) ) |
| 49 |
41 48 3
|
vtocl |
⊢ ( ( 𝜑 ∧ ( ( 𝐵 ‘ 𝑁 ) ∈ 𝑆 ∧ ( 𝐵 ‘ 𝑁 ) ≠ 0 ) ) → ( 1 / ( 𝐵 ‘ 𝑁 ) ) ∈ 𝑆 ) |
| 50 |
49
|
ex |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝑁 ) ∈ 𝑆 ∧ ( 𝐵 ‘ 𝑁 ) ≠ 0 ) → ( 1 / ( 𝐵 ‘ 𝑁 ) ) ∈ 𝑆 ) ) |
| 51 |
34 39 50
|
mp2and |
⊢ ( 𝜑 → ( 1 / ( 𝐵 ‘ 𝑁 ) ) ∈ 𝑆 ) |
| 52 |
2 27 51
|
caovcld |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑀 ) · ( 1 / ( 𝐵 ‘ 𝑁 ) ) ) ∈ 𝑆 ) |
| 53 |
40 52
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) ∈ 𝑆 ) |
| 54 |
13
|
ply1term |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) ∈ 𝑆 ∧ 𝐷 ∈ ℕ0 ) → 𝐻 ∈ ( Poly ‘ 𝑆 ) ) |
| 55 |
20 53 9 54
|
syl3anc |
⊢ ( 𝜑 → 𝐻 ∈ ( Poly ‘ 𝑆 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → 𝐻 ∈ ( Poly ‘ 𝑆 ) ) |
| 57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → 𝑝 ∈ ( Poly ‘ 𝑆 ) ) |
| 58 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 59 |
56 57 58
|
plyadd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐻 ∘f + 𝑝 ) ∈ ( Poly ‘ 𝑆 ) ) |
| 60 |
|
cnex |
⊢ ℂ ∈ V |
| 61 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ℂ ∈ V ) |
| 62 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 63 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
| 64 |
62 63
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → 𝐹 : ℂ ⟶ ℂ ) |
| 65 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 66 |
65
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 67 |
|
plyf |
⊢ ( 𝐻 ∈ ( Poly ‘ 𝑆 ) → 𝐻 : ℂ ⟶ ℂ ) |
| 68 |
56 67
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → 𝐻 : ℂ ⟶ ℂ ) |
| 69 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 70 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
| 71 |
69 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → 𝐺 : ℂ ⟶ ℂ ) |
| 72 |
|
inidm |
⊢ ( ℂ ∩ ℂ ) = ℂ |
| 73 |
66 68 71 61 61 72
|
off |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐻 ∘f · 𝐺 ) : ℂ ⟶ ℂ ) |
| 74 |
|
plyf |
⊢ ( 𝑝 ∈ ( Poly ‘ 𝑆 ) → 𝑝 : ℂ ⟶ ℂ ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → 𝑝 : ℂ ⟶ ℂ ) |
| 76 |
66 71 75 61 61 72
|
off |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐺 ∘f · 𝑝 ) : ℂ ⟶ ℂ ) |
| 77 |
|
subsub4 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 − 𝑦 ) − 𝑧 ) = ( 𝑥 − ( 𝑦 + 𝑧 ) ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 − 𝑦 ) − 𝑧 ) = ( 𝑥 − ( 𝑦 + 𝑧 ) ) ) |
| 79 |
61 64 73 76 78
|
caofass |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = ( 𝐹 ∘f − ( ( 𝐻 ∘f · 𝐺 ) ∘f + ( 𝐺 ∘f · 𝑝 ) ) ) ) |
| 80 |
|
mulcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
| 81 |
80
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
| 82 |
61 68 71 81
|
caofcom |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐻 ∘f · 𝐺 ) = ( 𝐺 ∘f · 𝐻 ) ) |
| 83 |
82
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( ( 𝐻 ∘f · 𝐺 ) ∘f + ( 𝐺 ∘f · 𝑝 ) ) = ( ( 𝐺 ∘f · 𝐻 ) ∘f + ( 𝐺 ∘f · 𝑝 ) ) ) |
| 84 |
|
adddi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 85 |
84
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 86 |
61 71 68 75 85
|
caofdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) = ( ( 𝐺 ∘f · 𝐻 ) ∘f + ( 𝐺 ∘f · 𝑝 ) ) ) |
| 87 |
83 86
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( ( 𝐻 ∘f · 𝐺 ) ∘f + ( 𝐺 ∘f · 𝑝 ) ) = ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) |
| 88 |
87
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐹 ∘f − ( ( 𝐻 ∘f · 𝐺 ) ∘f + ( 𝐺 ∘f · 𝑝 ) ) ) = ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) |
| 89 |
79 88
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) |
| 90 |
89
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ↔ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) = 0𝑝 ) ) |
| 91 |
89
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) = ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) ) |
| 92 |
91
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ↔ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) < 𝑁 ) ) |
| 93 |
90 92
|
orbi12d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → ( ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ) ↔ ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) < 𝑁 ) ) ) |
| 94 |
93
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) ∧ ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ) ) → ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) < 𝑁 ) ) |
| 95 |
|
oveq2 |
⊢ ( 𝑞 = ( 𝐻 ∘f + 𝑝 ) → ( 𝐺 ∘f · 𝑞 ) = ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝑞 = ( 𝐻 ∘f + 𝑝 ) → ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑞 ) ) = ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) |
| 97 |
8 96
|
eqtrid |
⊢ ( 𝑞 = ( 𝐻 ∘f + 𝑝 ) → 𝑅 = ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) |
| 98 |
97
|
eqeq1d |
⊢ ( 𝑞 = ( 𝐻 ∘f + 𝑝 ) → ( 𝑅 = 0𝑝 ↔ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) = 0𝑝 ) ) |
| 99 |
97
|
fveq2d |
⊢ ( 𝑞 = ( 𝐻 ∘f + 𝑝 ) → ( deg ‘ 𝑅 ) = ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) ) |
| 100 |
99
|
breq1d |
⊢ ( 𝑞 = ( 𝐻 ∘f + 𝑝 ) → ( ( deg ‘ 𝑅 ) < 𝑁 ↔ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) < 𝑁 ) ) |
| 101 |
98 100
|
orbi12d |
⊢ ( 𝑞 = ( 𝐻 ∘f + 𝑝 ) → ( ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < 𝑁 ) ↔ ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) < 𝑁 ) ) ) |
| 102 |
101
|
rspcev |
⊢ ( ( ( 𝐻 ∘f + 𝑝 ) ∈ ( Poly ‘ 𝑆 ) ∧ ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐻 ∘f + 𝑝 ) ) ) ) < 𝑁 ) ) → ∃ 𝑞 ∈ ( Poly ‘ 𝑆 ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < 𝑁 ) ) |
| 103 |
59 94 102
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) ∧ ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ) ) → ∃ 𝑞 ∈ ( Poly ‘ 𝑆 ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < 𝑁 ) ) |
| 104 |
55 6 1 2
|
plymul |
⊢ ( 𝜑 → ( 𝐻 ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) |
| 105 |
|
eqid |
⊢ ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) = ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) |
| 106 |
17 105
|
dgrsub |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐻 ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ≤ if ( 𝑀 ≤ ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , 𝑀 ) ) |
| 107 |
5 104 106
|
syl2anc |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ≤ if ( 𝑀 ≤ ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , 𝑀 ) ) |
| 108 |
17 15
|
dgreq0 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹 = 0𝑝 ↔ ( 𝐴 ‘ 𝑀 ) = 0 ) ) |
| 109 |
5 108
|
syl |
⊢ ( 𝜑 → ( 𝐹 = 0𝑝 ↔ ( 𝐴 ‘ 𝑀 ) = 0 ) ) |
| 110 |
109
|
necon3bid |
⊢ ( 𝜑 → ( 𝐹 ≠ 0𝑝 ↔ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) ) |
| 111 |
11 110
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ≠ 0 ) |
| 112 |
28 35 111 39
|
divne0d |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) ≠ 0 ) |
| 113 |
20 53
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) ∈ ℂ ) |
| 114 |
13
|
coe1term |
⊢ ( ( ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) ∈ ℂ ∧ 𝐷 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) → ( ( coeff ‘ 𝐻 ) ‘ 𝐷 ) = if ( 𝐷 = 𝐷 , ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) , 0 ) ) |
| 115 |
113 9 9 114
|
syl3anc |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐻 ) ‘ 𝐷 ) = if ( 𝐷 = 𝐷 , ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) , 0 ) ) |
| 116 |
|
eqid |
⊢ 𝐷 = 𝐷 |
| 117 |
116
|
iftruei |
⊢ if ( 𝐷 = 𝐷 , ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) , 0 ) = ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) |
| 118 |
115 117
|
eqtrdi |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐻 ) ‘ 𝐷 ) = ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) ) |
| 119 |
|
c0ex |
⊢ 0 ∈ V |
| 120 |
119
|
fvconst2 |
⊢ ( 𝐷 ∈ ℕ0 → ( ( ℕ0 × { 0 } ) ‘ 𝐷 ) = 0 ) |
| 121 |
9 120
|
syl |
⊢ ( 𝜑 → ( ( ℕ0 × { 0 } ) ‘ 𝐷 ) = 0 ) |
| 122 |
112 118 121
|
3netr4d |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐻 ) ‘ 𝐷 ) ≠ ( ( ℕ0 × { 0 } ) ‘ 𝐷 ) ) |
| 123 |
|
fveq2 |
⊢ ( 𝐻 = 0𝑝 → ( coeff ‘ 𝐻 ) = ( coeff ‘ 0𝑝 ) ) |
| 124 |
|
coe0 |
⊢ ( coeff ‘ 0𝑝 ) = ( ℕ0 × { 0 } ) |
| 125 |
123 124
|
eqtrdi |
⊢ ( 𝐻 = 0𝑝 → ( coeff ‘ 𝐻 ) = ( ℕ0 × { 0 } ) ) |
| 126 |
125
|
fveq1d |
⊢ ( 𝐻 = 0𝑝 → ( ( coeff ‘ 𝐻 ) ‘ 𝐷 ) = ( ( ℕ0 × { 0 } ) ‘ 𝐷 ) ) |
| 127 |
126
|
necon3i |
⊢ ( ( ( coeff ‘ 𝐻 ) ‘ 𝐷 ) ≠ ( ( ℕ0 × { 0 } ) ‘ 𝐷 ) → 𝐻 ≠ 0𝑝 ) |
| 128 |
122 127
|
syl |
⊢ ( 𝜑 → 𝐻 ≠ 0𝑝 ) |
| 129 |
|
eqid |
⊢ ( deg ‘ 𝐻 ) = ( deg ‘ 𝐻 ) |
| 130 |
129 18
|
dgrmul |
⊢ ( ( ( 𝐻 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐻 ≠ 0𝑝 ) ∧ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) ) → ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) = ( ( deg ‘ 𝐻 ) + 𝑁 ) ) |
| 131 |
55 128 6 7 130
|
syl22anc |
⊢ ( 𝜑 → ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) = ( ( deg ‘ 𝐻 ) + 𝑁 ) ) |
| 132 |
13
|
dgr1term |
⊢ ( ( ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) ∈ ℂ ∧ ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) ≠ 0 ∧ 𝐷 ∈ ℕ0 ) → ( deg ‘ 𝐻 ) = 𝐷 ) |
| 133 |
113 112 9 132
|
syl3anc |
⊢ ( 𝜑 → ( deg ‘ 𝐻 ) = 𝐷 ) |
| 134 |
133 10
|
eqtr4d |
⊢ ( 𝜑 → ( deg ‘ 𝐻 ) = ( 𝑀 − 𝑁 ) ) |
| 135 |
134
|
oveq1d |
⊢ ( 𝜑 → ( ( deg ‘ 𝐻 ) + 𝑁 ) = ( ( 𝑀 − 𝑁 ) + 𝑁 ) ) |
| 136 |
26
|
nn0cnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 137 |
33
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 138 |
136 137
|
npcand |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑁 ) + 𝑁 ) = 𝑀 ) |
| 139 |
135 138
|
eqtrd |
⊢ ( 𝜑 → ( ( deg ‘ 𝐻 ) + 𝑁 ) = 𝑀 ) |
| 140 |
131 139
|
eqtrd |
⊢ ( 𝜑 → ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) = 𝑀 ) |
| 141 |
140
|
ifeq1d |
⊢ ( 𝜑 → if ( 𝑀 ≤ ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , 𝑀 ) = if ( 𝑀 ≤ ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , 𝑀 , 𝑀 ) ) |
| 142 |
|
ifid |
⊢ if ( 𝑀 ≤ ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , 𝑀 , 𝑀 ) = 𝑀 |
| 143 |
141 142
|
eqtrdi |
⊢ ( 𝜑 → if ( 𝑀 ≤ ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , ( deg ‘ ( 𝐻 ∘f · 𝐺 ) ) , 𝑀 ) = 𝑀 ) |
| 144 |
107 143
|
breqtrd |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ≤ 𝑀 ) |
| 145 |
|
eqid |
⊢ ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) = ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) |
| 146 |
15 145
|
coesub |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐻 ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) → ( coeff ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) = ( 𝐴 ∘f − ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ) ) |
| 147 |
5 104 146
|
syl2anc |
⊢ ( 𝜑 → ( coeff ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) = ( 𝐴 ∘f − ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ) ) |
| 148 |
147
|
fveq1d |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ‘ 𝑀 ) = ( ( 𝐴 ∘f − ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ) ‘ 𝑀 ) ) |
| 149 |
15
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 150 |
|
ffn |
⊢ ( 𝐴 : ℕ0 ⟶ ℂ → 𝐴 Fn ℕ0 ) |
| 151 |
5 149 150
|
3syl |
⊢ ( 𝜑 → 𝐴 Fn ℕ0 ) |
| 152 |
145
|
coef3 |
⊢ ( ( 𝐻 ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) : ℕ0 ⟶ ℂ ) |
| 153 |
|
ffn |
⊢ ( ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) : ℕ0 ⟶ ℂ → ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) Fn ℕ0 ) |
| 154 |
104 152 153
|
3syl |
⊢ ( 𝜑 → ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) Fn ℕ0 ) |
| 155 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 156 |
155
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 157 |
|
inidm |
⊢ ( ℕ0 ∩ ℕ0 ) = ℕ0 |
| 158 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑀 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 159 |
|
eqid |
⊢ ( coeff ‘ 𝐻 ) = ( coeff ‘ 𝐻 ) |
| 160 |
159 16 129 18
|
coemulhi |
⊢ ( ( 𝐻 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ‘ ( ( deg ‘ 𝐻 ) + 𝑁 ) ) = ( ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) ) · ( 𝐵 ‘ 𝑁 ) ) ) |
| 161 |
55 6 160
|
syl2anc |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ‘ ( ( deg ‘ 𝐻 ) + 𝑁 ) ) = ( ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) ) · ( 𝐵 ‘ 𝑁 ) ) ) |
| 162 |
139
|
fveq2d |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ‘ ( ( deg ‘ 𝐻 ) + 𝑁 ) ) = ( ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ‘ 𝑀 ) ) |
| 163 |
133
|
fveq2d |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) ) = ( ( coeff ‘ 𝐻 ) ‘ 𝐷 ) ) |
| 164 |
163 118
|
eqtrd |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) ) = ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) ) |
| 165 |
164
|
oveq1d |
⊢ ( 𝜑 → ( ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) ) · ( 𝐵 ‘ 𝑁 ) ) = ( ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) · ( 𝐵 ‘ 𝑁 ) ) ) |
| 166 |
28 35 39
|
divcan1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝑀 ) / ( 𝐵 ‘ 𝑁 ) ) · ( 𝐵 ‘ 𝑁 ) ) = ( 𝐴 ‘ 𝑀 ) ) |
| 167 |
165 166
|
eqtrd |
⊢ ( 𝜑 → ( ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) ) · ( 𝐵 ‘ 𝑁 ) ) = ( 𝐴 ‘ 𝑀 ) ) |
| 168 |
161 162 167
|
3eqtr3d |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ‘ 𝑀 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ0 ) → ( ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ‘ 𝑀 ) = ( 𝐴 ‘ 𝑀 ) ) |
| 170 |
151 154 156 156 157 158 169
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ∘f − ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ) ‘ 𝑀 ) = ( ( 𝐴 ‘ 𝑀 ) − ( 𝐴 ‘ 𝑀 ) ) ) |
| 171 |
26 170
|
mpdan |
⊢ ( 𝜑 → ( ( 𝐴 ∘f − ( coeff ‘ ( 𝐻 ∘f · 𝐺 ) ) ) ‘ 𝑀 ) = ( ( 𝐴 ‘ 𝑀 ) − ( 𝐴 ‘ 𝑀 ) ) ) |
| 172 |
28
|
subidd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑀 ) − ( 𝐴 ‘ 𝑀 ) ) = 0 ) |
| 173 |
148 171 172
|
3eqtrd |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ‘ 𝑀 ) = 0 ) |
| 174 |
5 104 1 2 4
|
plysub |
⊢ ( 𝜑 → ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 175 |
|
dgrcl |
⊢ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ∈ ℕ0 ) |
| 176 |
174 175
|
syl |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ∈ ℕ0 ) |
| 177 |
176
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ∈ ℝ ) |
| 178 |
26
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 179 |
33
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 180 |
177 178 179
|
ltsub1d |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) < 𝑀 ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < ( 𝑀 − 𝑁 ) ) ) |
| 181 |
10
|
breq2d |
⊢ ( 𝜑 → ( ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < ( 𝑀 − 𝑁 ) ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < 𝐷 ) ) |
| 182 |
180 181
|
bitrd |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) < 𝑀 ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < 𝐷 ) ) |
| 183 |
182
|
orbi2d |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) < 𝑀 ) ↔ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ∨ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < 𝐷 ) ) ) |
| 184 |
|
eqid |
⊢ ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) = ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) |
| 185 |
|
eqid |
⊢ ( coeff ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) = ( coeff ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) |
| 186 |
184 185
|
dgrlt |
⊢ ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) < 𝑀 ) ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ≤ 𝑀 ∧ ( ( coeff ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ‘ 𝑀 ) = 0 ) ) ) |
| 187 |
174 26 186
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) < 𝑀 ) ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ≤ 𝑀 ∧ ( ( coeff ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ‘ 𝑀 ) = 0 ) ) ) |
| 188 |
183 187
|
bitr3d |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ∨ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < 𝐷 ) ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ≤ 𝑀 ∧ ( ( coeff ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ‘ 𝑀 ) = 0 ) ) ) |
| 189 |
144 173 188
|
mpbir2and |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ∨ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < 𝐷 ) ) |
| 190 |
|
eqeq1 |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( 𝑓 = 0𝑝 ↔ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ) ) |
| 191 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( deg ‘ 𝑓 ) = ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) ) |
| 192 |
191
|
oveq1d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( ( deg ‘ 𝑓 ) − 𝑁 ) = ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) ) |
| 193 |
192
|
breq1d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( ( ( deg ‘ 𝑓 ) − 𝑁 ) < 𝐷 ↔ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < 𝐷 ) ) |
| 194 |
190 193
|
orbi12d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( ( 𝑓 = 0𝑝 ∨ ( ( deg ‘ 𝑓 ) − 𝑁 ) < 𝐷 ) ↔ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ∨ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < 𝐷 ) ) ) |
| 195 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( 𝑓 ∘f − ( 𝐺 ∘f · 𝑝 ) ) = ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) |
| 196 |
12 195
|
eqtrid |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → 𝑈 = ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) |
| 197 |
196
|
eqeq1d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( 𝑈 = 0𝑝 ↔ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ) ) |
| 198 |
196
|
fveq2d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( deg ‘ 𝑈 ) = ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) ) |
| 199 |
198
|
breq1d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( ( deg ‘ 𝑈 ) < 𝑁 ↔ ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ) ) |
| 200 |
197 199
|
orbi12d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( ( 𝑈 = 0𝑝 ∨ ( deg ‘ 𝑈 ) < 𝑁 ) ↔ ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ) ) ) |
| 201 |
200
|
rexbidv |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( 𝑈 = 0𝑝 ∨ ( deg ‘ 𝑈 ) < 𝑁 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ) ) ) |
| 202 |
194 201
|
imbi12d |
⊢ ( 𝑓 = ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) → ( ( ( 𝑓 = 0𝑝 ∨ ( ( deg ‘ 𝑓 ) − 𝑁 ) < 𝐷 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( 𝑈 = 0𝑝 ∨ ( deg ‘ 𝑈 ) < 𝑁 ) ) ↔ ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ∨ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < 𝐷 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ) ) ) ) |
| 203 |
202 14 174
|
rspcdva |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) = 0𝑝 ∨ ( ( deg ‘ ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ) − 𝑁 ) < 𝐷 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ) ) ) |
| 204 |
189 203
|
mpd |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( ( 𝐹 ∘f − ( 𝐻 ∘f · 𝐺 ) ) ∘f − ( 𝐺 ∘f · 𝑝 ) ) ) < 𝑁 ) ) |
| 205 |
103 204
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑞 ∈ ( Poly ‘ 𝑆 ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < 𝑁 ) ) |