| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cnd |
⊢ ( ⊤ → 0 ∈ ℂ ) |
| 2 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 3 |
|
ply0 |
⊢ ( ℂ ⊆ ℂ → 0𝑝 ∈ ( Poly ‘ ℂ ) ) |
| 4 |
2 3
|
ax-mp |
⊢ 0𝑝 ∈ ( Poly ‘ ℂ ) |
| 5 |
|
coemulc |
⊢ ( ( 0 ∈ ℂ ∧ 0𝑝 ∈ ( Poly ‘ ℂ ) ) → ( coeff ‘ ( ( ℂ × { 0 } ) ∘f · 0𝑝 ) ) = ( ( ℕ0 × { 0 } ) ∘f · ( coeff ‘ 0𝑝 ) ) ) |
| 6 |
1 4 5
|
sylancl |
⊢ ( ⊤ → ( coeff ‘ ( ( ℂ × { 0 } ) ∘f · 0𝑝 ) ) = ( ( ℕ0 × { 0 } ) ∘f · ( coeff ‘ 0𝑝 ) ) ) |
| 7 |
|
cnex |
⊢ ℂ ∈ V |
| 8 |
7
|
a1i |
⊢ ( ⊤ → ℂ ∈ V ) |
| 9 |
|
plyf |
⊢ ( 0𝑝 ∈ ( Poly ‘ ℂ ) → 0𝑝 : ℂ ⟶ ℂ ) |
| 10 |
4 9
|
mp1i |
⊢ ( ⊤ → 0𝑝 : ℂ ⟶ ℂ ) |
| 11 |
|
mul02 |
⊢ ( 𝑥 ∈ ℂ → ( 0 · 𝑥 ) = 0 ) |
| 12 |
11
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 0 · 𝑥 ) = 0 ) |
| 13 |
8 10 1 1 12
|
caofid2 |
⊢ ( ⊤ → ( ( ℂ × { 0 } ) ∘f · 0𝑝 ) = ( ℂ × { 0 } ) ) |
| 14 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
| 15 |
13 14
|
eqtr4di |
⊢ ( ⊤ → ( ( ℂ × { 0 } ) ∘f · 0𝑝 ) = 0𝑝 ) |
| 16 |
15
|
fveq2d |
⊢ ( ⊤ → ( coeff ‘ ( ( ℂ × { 0 } ) ∘f · 0𝑝 ) ) = ( coeff ‘ 0𝑝 ) ) |
| 17 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 18 |
17
|
a1i |
⊢ ( ⊤ → ℕ0 ∈ V ) |
| 19 |
|
eqid |
⊢ ( coeff ‘ 0𝑝 ) = ( coeff ‘ 0𝑝 ) |
| 20 |
19
|
coef3 |
⊢ ( 0𝑝 ∈ ( Poly ‘ ℂ ) → ( coeff ‘ 0𝑝 ) : ℕ0 ⟶ ℂ ) |
| 21 |
4 20
|
mp1i |
⊢ ( ⊤ → ( coeff ‘ 0𝑝 ) : ℕ0 ⟶ ℂ ) |
| 22 |
18 21 1 1 12
|
caofid2 |
⊢ ( ⊤ → ( ( ℕ0 × { 0 } ) ∘f · ( coeff ‘ 0𝑝 ) ) = ( ℕ0 × { 0 } ) ) |
| 23 |
6 16 22
|
3eqtr3d |
⊢ ( ⊤ → ( coeff ‘ 0𝑝 ) = ( ℕ0 × { 0 } ) ) |
| 24 |
23
|
mptru |
⊢ ( coeff ‘ 0𝑝 ) = ( ℕ0 × { 0 } ) |