| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cnd |
|- ( T. -> 0 e. CC ) |
| 2 |
|
ssid |
|- CC C_ CC |
| 3 |
|
ply0 |
|- ( CC C_ CC -> 0p e. ( Poly ` CC ) ) |
| 4 |
2 3
|
ax-mp |
|- 0p e. ( Poly ` CC ) |
| 5 |
|
coemulc |
|- ( ( 0 e. CC /\ 0p e. ( Poly ` CC ) ) -> ( coeff ` ( ( CC X. { 0 } ) oF x. 0p ) ) = ( ( NN0 X. { 0 } ) oF x. ( coeff ` 0p ) ) ) |
| 6 |
1 4 5
|
sylancl |
|- ( T. -> ( coeff ` ( ( CC X. { 0 } ) oF x. 0p ) ) = ( ( NN0 X. { 0 } ) oF x. ( coeff ` 0p ) ) ) |
| 7 |
|
cnex |
|- CC e. _V |
| 8 |
7
|
a1i |
|- ( T. -> CC e. _V ) |
| 9 |
|
plyf |
|- ( 0p e. ( Poly ` CC ) -> 0p : CC --> CC ) |
| 10 |
4 9
|
mp1i |
|- ( T. -> 0p : CC --> CC ) |
| 11 |
|
mul02 |
|- ( x e. CC -> ( 0 x. x ) = 0 ) |
| 12 |
11
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( 0 x. x ) = 0 ) |
| 13 |
8 10 1 1 12
|
caofid2 |
|- ( T. -> ( ( CC X. { 0 } ) oF x. 0p ) = ( CC X. { 0 } ) ) |
| 14 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
| 15 |
13 14
|
eqtr4di |
|- ( T. -> ( ( CC X. { 0 } ) oF x. 0p ) = 0p ) |
| 16 |
15
|
fveq2d |
|- ( T. -> ( coeff ` ( ( CC X. { 0 } ) oF x. 0p ) ) = ( coeff ` 0p ) ) |
| 17 |
|
nn0ex |
|- NN0 e. _V |
| 18 |
17
|
a1i |
|- ( T. -> NN0 e. _V ) |
| 19 |
|
eqid |
|- ( coeff ` 0p ) = ( coeff ` 0p ) |
| 20 |
19
|
coef3 |
|- ( 0p e. ( Poly ` CC ) -> ( coeff ` 0p ) : NN0 --> CC ) |
| 21 |
4 20
|
mp1i |
|- ( T. -> ( coeff ` 0p ) : NN0 --> CC ) |
| 22 |
18 21 1 1 12
|
caofid2 |
|- ( T. -> ( ( NN0 X. { 0 } ) oF x. ( coeff ` 0p ) ) = ( NN0 X. { 0 } ) ) |
| 23 |
6 16 22
|
3eqtr3d |
|- ( T. -> ( coeff ` 0p ) = ( NN0 X. { 0 } ) ) |
| 24 |
23
|
mptru |
|- ( coeff ` 0p ) = ( NN0 X. { 0 } ) |