| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
| 2 |
|
id |
⊢ ( 𝑆 ⊆ ℂ → 𝑆 ⊆ ℂ ) |
| 3 |
|
0cnd |
⊢ ( 𝑆 ⊆ ℂ → 0 ∈ ℂ ) |
| 4 |
3
|
snssd |
⊢ ( 𝑆 ⊆ ℂ → { 0 } ⊆ ℂ ) |
| 5 |
2 4
|
unssd |
⊢ ( 𝑆 ⊆ ℂ → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
| 6 |
|
ssun2 |
⊢ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) |
| 7 |
|
c0ex |
⊢ 0 ∈ V |
| 8 |
7
|
snss |
⊢ ( 0 ∈ ( 𝑆 ∪ { 0 } ) ↔ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) ) |
| 9 |
6 8
|
mpbir |
⊢ 0 ∈ ( 𝑆 ∪ { 0 } ) |
| 10 |
|
plyconst |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ 0 ∈ ( 𝑆 ∪ { 0 } ) ) → ( ℂ × { 0 } ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
| 11 |
5 9 10
|
sylancl |
⊢ ( 𝑆 ⊆ ℂ → ( ℂ × { 0 } ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
| 12 |
1 11
|
eqeltrid |
⊢ ( 𝑆 ⊆ ℂ → 0𝑝 ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
| 13 |
|
plyun0 |
⊢ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) = ( Poly ‘ 𝑆 ) |
| 14 |
12 13
|
eleqtrdi |
⊢ ( 𝑆 ⊆ ℂ → 0𝑝 ∈ ( Poly ‘ 𝑆 ) ) |