Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
2 |
|
plydiv.tm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
3 |
|
plydiv.rc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ 𝑆 ) |
4 |
|
plydiv.m1 |
⊢ ( 𝜑 → - 1 ∈ 𝑆 ) |
5 |
|
plydiv.f |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
6 |
|
plydiv.g |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
7 |
|
plydiv.z |
⊢ ( 𝜑 → 𝐺 ≠ 0𝑝 ) |
8 |
|
plydiv.r |
⊢ 𝑅 = ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑞 ) ) |
9 |
|
plydiveu.q |
⊢ ( 𝜑 → 𝑞 ∈ ( Poly ‘ 𝑆 ) ) |
10 |
|
plydiveu.qd |
⊢ ( 𝜑 → ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) |
11 |
|
plydiveu.t |
⊢ 𝑇 = ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑝 ) ) |
12 |
|
plydiveu.p |
⊢ ( 𝜑 → 𝑝 ∈ ( Poly ‘ 𝑆 ) ) |
13 |
|
plydiveu.pd |
⊢ ( 𝜑 → ( 𝑇 = 0𝑝 ∨ ( deg ‘ 𝑇 ) < ( deg ‘ 𝐺 ) ) ) |
14 |
|
idd |
⊢ ( 𝜑 → ( ( 𝑝 ∘f − 𝑞 ) = 0𝑝 → ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ) ) |
15 |
1 2 3 4 5 6 7 8
|
plydivlem2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Poly ‘ 𝑆 ) ) → 𝑅 ∈ ( Poly ‘ 𝑆 ) ) |
16 |
9 15
|
mpdan |
⊢ ( 𝜑 → 𝑅 ∈ ( Poly ‘ 𝑆 ) ) |
17 |
1 2 3 4 5 6 7 11
|
plydivlem2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝑆 ) ) → 𝑇 ∈ ( Poly ‘ 𝑆 ) ) |
18 |
12 17
|
mpdan |
⊢ ( 𝜑 → 𝑇 ∈ ( Poly ‘ 𝑆 ) ) |
19 |
16 18 1 2 4
|
plysub |
⊢ ( 𝜑 → ( 𝑅 ∘f − 𝑇 ) ∈ ( Poly ‘ 𝑆 ) ) |
20 |
|
dgrcl |
⊢ ( ( 𝑅 ∘f − 𝑇 ) ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ∈ ℕ0 ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ∈ ℕ0 ) |
22 |
21
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ∈ ℝ ) |
23 |
|
dgrcl |
⊢ ( 𝑇 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝑇 ) ∈ ℕ0 ) |
24 |
18 23
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝑇 ) ∈ ℕ0 ) |
25 |
24
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ 𝑇 ) ∈ ℝ ) |
26 |
|
dgrcl |
⊢ ( 𝑅 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝑅 ) ∈ ℕ0 ) |
27 |
16 26
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝑅 ) ∈ ℕ0 ) |
28 |
27
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ 𝑅 ) ∈ ℝ ) |
29 |
25 28
|
ifcld |
⊢ ( 𝜑 → if ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝑇 ) , ( deg ‘ 𝑇 ) , ( deg ‘ 𝑅 ) ) ∈ ℝ ) |
30 |
|
dgrcl |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
31 |
6 30
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
32 |
31
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℝ ) |
33 |
|
eqid |
⊢ ( deg ‘ 𝑅 ) = ( deg ‘ 𝑅 ) |
34 |
|
eqid |
⊢ ( deg ‘ 𝑇 ) = ( deg ‘ 𝑇 ) |
35 |
33 34
|
dgrsub |
⊢ ( ( 𝑅 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑇 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ≤ if ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝑇 ) , ( deg ‘ 𝑇 ) , ( deg ‘ 𝑅 ) ) ) |
36 |
16 18 35
|
syl2anc |
⊢ ( 𝜑 → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ≤ if ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝑇 ) , ( deg ‘ 𝑇 ) , ( deg ‘ 𝑅 ) ) ) |
37 |
|
eqid |
⊢ ( coeff ‘ 𝑇 ) = ( coeff ‘ 𝑇 ) |
38 |
34 37
|
dgrlt |
⊢ ( ( 𝑇 ∈ ( Poly ‘ 𝑆 ) ∧ ( deg ‘ 𝐺 ) ∈ ℕ0 ) → ( ( 𝑇 = 0𝑝 ∨ ( deg ‘ 𝑇 ) < ( deg ‘ 𝐺 ) ) ↔ ( ( deg ‘ 𝑇 ) ≤ ( deg ‘ 𝐺 ) ∧ ( ( coeff ‘ 𝑇 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) ) ) |
39 |
18 31 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑇 = 0𝑝 ∨ ( deg ‘ 𝑇 ) < ( deg ‘ 𝐺 ) ) ↔ ( ( deg ‘ 𝑇 ) ≤ ( deg ‘ 𝐺 ) ∧ ( ( coeff ‘ 𝑇 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) ) ) |
40 |
13 39
|
mpbid |
⊢ ( 𝜑 → ( ( deg ‘ 𝑇 ) ≤ ( deg ‘ 𝐺 ) ∧ ( ( coeff ‘ 𝑇 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) ) |
41 |
40
|
simpld |
⊢ ( 𝜑 → ( deg ‘ 𝑇 ) ≤ ( deg ‘ 𝐺 ) ) |
42 |
|
eqid |
⊢ ( coeff ‘ 𝑅 ) = ( coeff ‘ 𝑅 ) |
43 |
33 42
|
dgrlt |
⊢ ( ( 𝑅 ∈ ( Poly ‘ 𝑆 ) ∧ ( deg ‘ 𝐺 ) ∈ ℕ0 ) → ( ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ↔ ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝐺 ) ∧ ( ( coeff ‘ 𝑅 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) ) ) |
44 |
16 31 43
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ↔ ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝐺 ) ∧ ( ( coeff ‘ 𝑅 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) ) ) |
45 |
10 44
|
mpbid |
⊢ ( 𝜑 → ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝐺 ) ∧ ( ( coeff ‘ 𝑅 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) ) |
46 |
45
|
simpld |
⊢ ( 𝜑 → ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝐺 ) ) |
47 |
|
breq1 |
⊢ ( ( deg ‘ 𝑇 ) = if ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝑇 ) , ( deg ‘ 𝑇 ) , ( deg ‘ 𝑅 ) ) → ( ( deg ‘ 𝑇 ) ≤ ( deg ‘ 𝐺 ) ↔ if ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝑇 ) , ( deg ‘ 𝑇 ) , ( deg ‘ 𝑅 ) ) ≤ ( deg ‘ 𝐺 ) ) ) |
48 |
|
breq1 |
⊢ ( ( deg ‘ 𝑅 ) = if ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝑇 ) , ( deg ‘ 𝑇 ) , ( deg ‘ 𝑅 ) ) → ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝐺 ) ↔ if ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝑇 ) , ( deg ‘ 𝑇 ) , ( deg ‘ 𝑅 ) ) ≤ ( deg ‘ 𝐺 ) ) ) |
49 |
47 48
|
ifboth |
⊢ ( ( ( deg ‘ 𝑇 ) ≤ ( deg ‘ 𝐺 ) ∧ ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝐺 ) ) → if ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝑇 ) , ( deg ‘ 𝑇 ) , ( deg ‘ 𝑅 ) ) ≤ ( deg ‘ 𝐺 ) ) |
50 |
41 46 49
|
syl2anc |
⊢ ( 𝜑 → if ( ( deg ‘ 𝑅 ) ≤ ( deg ‘ 𝑇 ) , ( deg ‘ 𝑇 ) , ( deg ‘ 𝑅 ) ) ≤ ( deg ‘ 𝐺 ) ) |
51 |
22 29 32 36 50
|
letrd |
⊢ ( 𝜑 → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ≤ ( deg ‘ 𝐺 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ≤ ( deg ‘ 𝐺 ) ) |
53 |
12 9 1 2 4
|
plysub |
⊢ ( 𝜑 → ( 𝑝 ∘f − 𝑞 ) ∈ ( Poly ‘ 𝑆 ) ) |
54 |
|
dgrcl |
⊢ ( ( 𝑝 ∘f − 𝑞 ) ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) ∈ ℕ0 ) |
55 |
53 54
|
syl |
⊢ ( 𝜑 → ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) ∈ ℕ0 ) |
56 |
|
nn0addge1 |
⊢ ( ( ( deg ‘ 𝐺 ) ∈ ℝ ∧ ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) ∈ ℕ0 ) → ( deg ‘ 𝐺 ) ≤ ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) ) ) |
57 |
32 55 56
|
syl2anc |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ≤ ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( deg ‘ 𝐺 ) ≤ ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) ) ) |
59 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
60 |
5 59
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
61 |
60
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
62 |
6 9 1 2
|
plymul |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝑞 ) ∈ ( Poly ‘ 𝑆 ) ) |
63 |
|
plyf |
⊢ ( ( 𝐺 ∘f · 𝑞 ) ∈ ( Poly ‘ 𝑆 ) → ( 𝐺 ∘f · 𝑞 ) : ℂ ⟶ ℂ ) |
64 |
62 63
|
syl |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝑞 ) : ℂ ⟶ ℂ ) |
65 |
64
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ∈ ℂ ) |
66 |
6 12 1 2
|
plymul |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝑝 ) ∈ ( Poly ‘ 𝑆 ) ) |
67 |
|
plyf |
⊢ ( ( 𝐺 ∘f · 𝑝 ) ∈ ( Poly ‘ 𝑆 ) → ( 𝐺 ∘f · 𝑝 ) : ℂ ⟶ ℂ ) |
68 |
66 67
|
syl |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝑝 ) : ℂ ⟶ ℂ ) |
69 |
68
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) ∈ ℂ ) |
70 |
61 65 69
|
nnncan1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) − ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) ) ) = ( ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) ) |
71 |
70
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) − ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) ) ) |
72 |
|
cnex |
⊢ ℂ ∈ V |
73 |
72
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
74 |
61 65
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) ∈ ℂ ) |
75 |
61 69
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) ) ∈ ℂ ) |
76 |
60
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
77 |
64
|
feqmptd |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝑞 ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) ) |
78 |
73 61 65 76 77
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑞 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) ) ) |
79 |
8 78
|
eqtrid |
⊢ ( 𝜑 → 𝑅 = ( 𝑧 ∈ ℂ ↦ ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) ) ) |
80 |
68
|
feqmptd |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝑝 ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) ) ) |
81 |
73 61 69 76 80
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑝 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) ) ) ) |
82 |
11 81
|
eqtrid |
⊢ ( 𝜑 → 𝑇 = ( 𝑧 ∈ ℂ ↦ ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) ) ) ) |
83 |
73 74 75 79 82
|
offval2 |
⊢ ( 𝜑 → ( 𝑅 ∘f − 𝑇 ) = ( 𝑧 ∈ ℂ ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) − ( ( 𝐹 ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) ) ) ) ) |
84 |
73 69 65 80 77
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝑝 ) ∘f − ( 𝐺 ∘f · 𝑞 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( ( 𝐺 ∘f · 𝑝 ) ‘ 𝑧 ) − ( ( 𝐺 ∘f · 𝑞 ) ‘ 𝑧 ) ) ) ) |
85 |
71 83 84
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑅 ∘f − 𝑇 ) = ( ( 𝐺 ∘f · 𝑝 ) ∘f − ( 𝐺 ∘f · 𝑞 ) ) ) |
86 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
87 |
6 86
|
syl |
⊢ ( 𝜑 → 𝐺 : ℂ ⟶ ℂ ) |
88 |
|
plyf |
⊢ ( 𝑝 ∈ ( Poly ‘ 𝑆 ) → 𝑝 : ℂ ⟶ ℂ ) |
89 |
12 88
|
syl |
⊢ ( 𝜑 → 𝑝 : ℂ ⟶ ℂ ) |
90 |
|
plyf |
⊢ ( 𝑞 ∈ ( Poly ‘ 𝑆 ) → 𝑞 : ℂ ⟶ ℂ ) |
91 |
9 90
|
syl |
⊢ ( 𝜑 → 𝑞 : ℂ ⟶ ℂ ) |
92 |
|
subdi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 · ( 𝑦 − 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) − ( 𝑥 · 𝑧 ) ) ) |
93 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑥 · ( 𝑦 − 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) − ( 𝑥 · 𝑧 ) ) ) |
94 |
73 87 89 91 93
|
caofdi |
⊢ ( 𝜑 → ( 𝐺 ∘f · ( 𝑝 ∘f − 𝑞 ) ) = ( ( 𝐺 ∘f · 𝑝 ) ∘f − ( 𝐺 ∘f · 𝑞 ) ) ) |
95 |
85 94
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑅 ∘f − 𝑇 ) = ( 𝐺 ∘f · ( 𝑝 ∘f − 𝑞 ) ) ) |
96 |
95
|
fveq2d |
⊢ ( 𝜑 → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( deg ‘ ( 𝐺 ∘f · ( 𝑝 ∘f − 𝑞 ) ) ) ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( deg ‘ ( 𝐺 ∘f · ( 𝑝 ∘f − 𝑞 ) ) ) ) |
98 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
99 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → 𝐺 ≠ 0𝑝 ) |
100 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( 𝑝 ∘f − 𝑞 ) ∈ ( Poly ‘ 𝑆 ) ) |
101 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) |
102 |
|
eqid |
⊢ ( deg ‘ 𝐺 ) = ( deg ‘ 𝐺 ) |
103 |
|
eqid |
⊢ ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) = ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) |
104 |
102 103
|
dgrmul |
⊢ ( ( ( 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) ∧ ( ( 𝑝 ∘f − 𝑞 ) ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) ) → ( deg ‘ ( 𝐺 ∘f · ( 𝑝 ∘f − 𝑞 ) ) ) = ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) ) ) |
105 |
98 99 100 101 104
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( deg ‘ ( 𝐺 ∘f · ( 𝑝 ∘f − 𝑞 ) ) ) = ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) ) ) |
106 |
97 105
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝑝 ∘f − 𝑞 ) ) ) ) |
107 |
58 106
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ) |
108 |
22 32
|
letri3d |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( deg ‘ 𝐺 ) ↔ ( ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ≤ ( deg ‘ 𝐺 ) ∧ ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ) ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( deg ‘ 𝐺 ) ↔ ( ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ≤ ( deg ‘ 𝐺 ) ∧ ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ) ) ) |
110 |
52 107 109
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( deg ‘ 𝐺 ) ) |
111 |
110
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ) = ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ 𝐺 ) ) ) |
112 |
42 37
|
coesub |
⊢ ( ( 𝑅 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑇 ∈ ( Poly ‘ 𝑆 ) ) → ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( ( coeff ‘ 𝑅 ) ∘f − ( coeff ‘ 𝑇 ) ) ) |
113 |
16 18 112
|
syl2anc |
⊢ ( 𝜑 → ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( ( coeff ‘ 𝑅 ) ∘f − ( coeff ‘ 𝑇 ) ) ) |
114 |
113
|
fveq1d |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ 𝐺 ) ) = ( ( ( coeff ‘ 𝑅 ) ∘f − ( coeff ‘ 𝑇 ) ) ‘ ( deg ‘ 𝐺 ) ) ) |
115 |
42
|
coef3 |
⊢ ( 𝑅 ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ 𝑅 ) : ℕ0 ⟶ ℂ ) |
116 |
|
ffn |
⊢ ( ( coeff ‘ 𝑅 ) : ℕ0 ⟶ ℂ → ( coeff ‘ 𝑅 ) Fn ℕ0 ) |
117 |
16 115 116
|
3syl |
⊢ ( 𝜑 → ( coeff ‘ 𝑅 ) Fn ℕ0 ) |
118 |
37
|
coef3 |
⊢ ( 𝑇 ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ 𝑇 ) : ℕ0 ⟶ ℂ ) |
119 |
|
ffn |
⊢ ( ( coeff ‘ 𝑇 ) : ℕ0 ⟶ ℂ → ( coeff ‘ 𝑇 ) Fn ℕ0 ) |
120 |
18 118 119
|
3syl |
⊢ ( 𝜑 → ( coeff ‘ 𝑇 ) Fn ℕ0 ) |
121 |
|
nn0ex |
⊢ ℕ0 ∈ V |
122 |
121
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
123 |
|
inidm |
⊢ ( ℕ0 ∩ ℕ0 ) = ℕ0 |
124 |
45
|
simprd |
⊢ ( 𝜑 → ( ( coeff ‘ 𝑅 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) |
125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ ( deg ‘ 𝐺 ) ∈ ℕ0 ) → ( ( coeff ‘ 𝑅 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) |
126 |
40
|
simprd |
⊢ ( 𝜑 → ( ( coeff ‘ 𝑇 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ ( deg ‘ 𝐺 ) ∈ ℕ0 ) → ( ( coeff ‘ 𝑇 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) |
128 |
117 120 122 122 123 125 127
|
ofval |
⊢ ( ( 𝜑 ∧ ( deg ‘ 𝐺 ) ∈ ℕ0 ) → ( ( ( coeff ‘ 𝑅 ) ∘f − ( coeff ‘ 𝑇 ) ) ‘ ( deg ‘ 𝐺 ) ) = ( 0 − 0 ) ) |
129 |
31 128
|
mpdan |
⊢ ( 𝜑 → ( ( ( coeff ‘ 𝑅 ) ∘f − ( coeff ‘ 𝑇 ) ) ‘ ( deg ‘ 𝐺 ) ) = ( 0 − 0 ) ) |
130 |
114 129
|
eqtrd |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ 𝐺 ) ) = ( 0 − 0 ) ) |
131 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
132 |
130 131
|
eqtrdi |
⊢ ( 𝜑 → ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) |
133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) |
134 |
111 133
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ) = 0 ) |
135 |
|
eqid |
⊢ ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) |
136 |
|
eqid |
⊢ ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) = ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) |
137 |
135 136
|
dgreq0 |
⊢ ( ( 𝑅 ∘f − 𝑇 ) ∈ ( Poly ‘ 𝑆 ) → ( ( 𝑅 ∘f − 𝑇 ) = 0𝑝 ↔ ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ) = 0 ) ) |
138 |
19 137
|
syl |
⊢ ( 𝜑 → ( ( 𝑅 ∘f − 𝑇 ) = 0𝑝 ↔ ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ) = 0 ) ) |
139 |
138
|
biimpar |
⊢ ( ( 𝜑 ∧ ( ( coeff ‘ ( 𝑅 ∘f − 𝑇 ) ) ‘ ( deg ‘ ( 𝑅 ∘f − 𝑇 ) ) ) = 0 ) → ( 𝑅 ∘f − 𝑇 ) = 0𝑝 ) |
140 |
134 139
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 ) → ( 𝑅 ∘f − 𝑇 ) = 0𝑝 ) |
141 |
140
|
ex |
⊢ ( 𝜑 → ( ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 → ( 𝑅 ∘f − 𝑇 ) = 0𝑝 ) ) |
142 |
|
plymul0or |
⊢ ( ( 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑝 ∘f − 𝑞 ) ∈ ( Poly ‘ 𝑆 ) ) → ( ( 𝐺 ∘f · ( 𝑝 ∘f − 𝑞 ) ) = 0𝑝 ↔ ( 𝐺 = 0𝑝 ∨ ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ) ) ) |
143 |
6 53 142
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ∘f · ( 𝑝 ∘f − 𝑞 ) ) = 0𝑝 ↔ ( 𝐺 = 0𝑝 ∨ ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ) ) ) |
144 |
95
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝑅 ∘f − 𝑇 ) = 0𝑝 ↔ ( 𝐺 ∘f · ( 𝑝 ∘f − 𝑞 ) ) = 0𝑝 ) ) |
145 |
7
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐺 = 0𝑝 ) |
146 |
|
biorf |
⊢ ( ¬ 𝐺 = 0𝑝 → ( ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ↔ ( 𝐺 = 0𝑝 ∨ ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ) ) ) |
147 |
145 146
|
syl |
⊢ ( 𝜑 → ( ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ↔ ( 𝐺 = 0𝑝 ∨ ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ) ) ) |
148 |
143 144 147
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝑅 ∘f − 𝑇 ) = 0𝑝 ↔ ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ) ) |
149 |
141 148
|
sylibd |
⊢ ( 𝜑 → ( ( 𝑝 ∘f − 𝑞 ) ≠ 0𝑝 → ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ) ) |
150 |
14 149
|
pm2.61dne |
⊢ ( 𝜑 → ( 𝑝 ∘f − 𝑞 ) = 0𝑝 ) |
151 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
152 |
150 151
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑝 ∘f − 𝑞 ) = ( ℂ × { 0 } ) ) |
153 |
|
ofsubeq0 |
⊢ ( ( ℂ ∈ V ∧ 𝑝 : ℂ ⟶ ℂ ∧ 𝑞 : ℂ ⟶ ℂ ) → ( ( 𝑝 ∘f − 𝑞 ) = ( ℂ × { 0 } ) ↔ 𝑝 = 𝑞 ) ) |
154 |
72 89 91 153
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝑝 ∘f − 𝑞 ) = ( ℂ × { 0 } ) ↔ 𝑝 = 𝑞 ) ) |
155 |
152 154
|
mpbid |
⊢ ( 𝜑 → 𝑝 = 𝑞 ) |