| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrcl |
|
| 2 |
|
dgrcl |
|
| 3 |
|
nn0addcl |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
c0ex |
|
| 6 |
5
|
fvconst2 |
|
| 7 |
4 6
|
syl |
|
| 8 |
|
fveq2 |
|
| 9 |
|
coe0 |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
10
|
fveq1d |
|
| 12 |
11
|
eqeq1d |
|
| 13 |
7 12
|
syl5ibrcom |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
14 15 16 17
|
coemulhi |
|
| 19 |
18
|
eqeq1d |
|
| 20 |
14
|
coef3 |
|
| 21 |
20
|
adantr |
|
| 22 |
1
|
adantr |
|
| 23 |
21 22
|
ffvelcdmd |
|
| 24 |
15
|
coef3 |
|
| 25 |
24
|
adantl |
|
| 26 |
2
|
adantl |
|
| 27 |
25 26
|
ffvelcdmd |
|
| 28 |
23 27
|
mul0ord |
|
| 29 |
19 28
|
bitrd |
|
| 30 |
13 29
|
sylibd |
|
| 31 |
16 14
|
dgreq0 |
|
| 32 |
31
|
adantr |
|
| 33 |
17 15
|
dgreq0 |
|
| 34 |
33
|
adantl |
|
| 35 |
32 34
|
orbi12d |
|
| 36 |
30 35
|
sylibrd |
|
| 37 |
|
cnex |
|
| 38 |
37
|
a1i |
|
| 39 |
|
plyf |
|
| 40 |
39
|
adantl |
|
| 41 |
|
0cnd |
|
| 42 |
|
mul02 |
|
| 43 |
42
|
adantl |
|
| 44 |
38 40 41 41 43
|
caofid2 |
|
| 45 |
|
id |
|
| 46 |
|
df-0p |
|
| 47 |
45 46
|
eqtrdi |
|
| 48 |
47
|
oveq1d |
|
| 49 |
48
|
eqeq1d |
|
| 50 |
44 49
|
syl5ibrcom |
|
| 51 |
|
plyf |
|
| 52 |
51
|
adantr |
|
| 53 |
|
mul01 |
|
| 54 |
53
|
adantl |
|
| 55 |
38 52 41 41 54
|
caofid1 |
|
| 56 |
|
id |
|
| 57 |
56 46
|
eqtrdi |
|
| 58 |
57
|
oveq2d |
|
| 59 |
58
|
eqeq1d |
|
| 60 |
55 59
|
syl5ibrcom |
|
| 61 |
50 60
|
jaod |
|
| 62 |
46
|
eqeq2i |
|
| 63 |
61 62
|
imbitrrdi |
|
| 64 |
36 63
|
impbid |
|