| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
| 4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
| 5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
| 6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
| 7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
| 8 |
|
plydiv.r |
|- R = ( F oF - ( G oF x. q ) ) |
| 9 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
| 10 |
5 9
|
syl |
|- ( ph -> ( deg ` F ) e. NN0 ) |
| 11 |
10
|
nn0red |
|- ( ph -> ( deg ` F ) e. RR ) |
| 12 |
|
dgrcl |
|- ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) |
| 13 |
6 12
|
syl |
|- ( ph -> ( deg ` G ) e. NN0 ) |
| 14 |
13
|
nn0red |
|- ( ph -> ( deg ` G ) e. RR ) |
| 15 |
11 14
|
resubcld |
|- ( ph -> ( ( deg ` F ) - ( deg ` G ) ) e. RR ) |
| 16 |
|
arch |
|- ( ( ( deg ` F ) - ( deg ` G ) ) e. RR -> E. d e. NN ( ( deg ` F ) - ( deg ` G ) ) < d ) |
| 17 |
15 16
|
syl |
|- ( ph -> E. d e. NN ( ( deg ` F ) - ( deg ` G ) ) < d ) |
| 18 |
|
olc |
|- ( ( ( deg ` F ) - ( deg ` G ) ) < d -> ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < d ) ) |
| 19 |
|
eqeq1 |
|- ( f = F -> ( f = 0p <-> F = 0p ) ) |
| 20 |
|
fveq2 |
|- ( f = F -> ( deg ` f ) = ( deg ` F ) ) |
| 21 |
20
|
oveq1d |
|- ( f = F -> ( ( deg ` f ) - ( deg ` G ) ) = ( ( deg ` F ) - ( deg ` G ) ) ) |
| 22 |
21
|
breq1d |
|- ( f = F -> ( ( ( deg ` f ) - ( deg ` G ) ) < d <-> ( ( deg ` F ) - ( deg ` G ) ) < d ) ) |
| 23 |
19 22
|
orbi12d |
|- ( f = F -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) <-> ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < d ) ) ) |
| 24 |
|
oveq1 |
|- ( f = F -> ( f oF - ( G oF x. q ) ) = ( F oF - ( G oF x. q ) ) ) |
| 25 |
24 8
|
eqtr4di |
|- ( f = F -> ( f oF - ( G oF x. q ) ) = R ) |
| 26 |
25
|
eqeq1d |
|- ( f = F -> ( ( f oF - ( G oF x. q ) ) = 0p <-> R = 0p ) ) |
| 27 |
25
|
fveq2d |
|- ( f = F -> ( deg ` ( f oF - ( G oF x. q ) ) ) = ( deg ` R ) ) |
| 28 |
27
|
breq1d |
|- ( f = F -> ( ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) <-> ( deg ` R ) < ( deg ` G ) ) ) |
| 29 |
26 28
|
orbi12d |
|- ( f = F -> ( ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
| 30 |
29
|
rexbidv |
|- ( f = F -> ( E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
| 31 |
23 30
|
imbi12d |
|- ( f = F -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) ) |
| 32 |
|
nnnn0 |
|- ( d e. NN -> d e. NN0 ) |
| 33 |
|
breq2 |
|- ( x = 0 -> ( ( ( deg ` f ) - ( deg ` G ) ) < x <-> ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) |
| 34 |
33
|
orbi2d |
|- ( x = 0 -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) <-> ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) |
| 35 |
34
|
imbi1d |
|- ( x = 0 -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 36 |
35
|
ralbidv |
|- ( x = 0 -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 37 |
36
|
imbi2d |
|- ( x = 0 -> ( ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) <-> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
| 38 |
|
breq2 |
|- ( x = d -> ( ( ( deg ` f ) - ( deg ` G ) ) < x <-> ( ( deg ` f ) - ( deg ` G ) ) < d ) ) |
| 39 |
38
|
orbi2d |
|- ( x = d -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) <-> ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) ) ) |
| 40 |
39
|
imbi1d |
|- ( x = d -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 41 |
40
|
ralbidv |
|- ( x = d -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 42 |
41
|
imbi2d |
|- ( x = d -> ( ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) <-> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
| 43 |
|
breq2 |
|- ( x = ( d + 1 ) -> ( ( ( deg ` f ) - ( deg ` G ) ) < x <-> ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) ) |
| 44 |
43
|
orbi2d |
|- ( x = ( d + 1 ) -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) <-> ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) ) ) |
| 45 |
44
|
imbi1d |
|- ( x = ( d + 1 ) -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 46 |
45
|
ralbidv |
|- ( x = ( d + 1 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 47 |
46
|
imbi2d |
|- ( x = ( d + 1 ) -> ( ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) <-> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
| 48 |
1
|
adantlr |
|- ( ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 49 |
2
|
adantlr |
|- ( ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 50 |
3
|
adantlr |
|- ( ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
| 51 |
4
|
adantr |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> -u 1 e. S ) |
| 52 |
|
simprl |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> f e. ( Poly ` S ) ) |
| 53 |
6
|
adantr |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> G e. ( Poly ` S ) ) |
| 54 |
7
|
adantr |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> G =/= 0p ) |
| 55 |
|
eqid |
|- ( f oF - ( G oF x. q ) ) = ( f oF - ( G oF x. q ) ) |
| 56 |
|
simprr |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) |
| 57 |
48 49 50 51 52 53 54 55 56
|
plydivlem3 |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
| 58 |
57
|
expr |
|- ( ( ph /\ f e. ( Poly ` S ) ) -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
| 59 |
58
|
ralrimiva |
|- ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
| 60 |
|
eqeq1 |
|- ( f = g -> ( f = 0p <-> g = 0p ) ) |
| 61 |
|
fveq2 |
|- ( f = g -> ( deg ` f ) = ( deg ` g ) ) |
| 62 |
61
|
oveq1d |
|- ( f = g -> ( ( deg ` f ) - ( deg ` G ) ) = ( ( deg ` g ) - ( deg ` G ) ) ) |
| 63 |
62
|
breq1d |
|- ( f = g -> ( ( ( deg ` f ) - ( deg ` G ) ) < d <-> ( ( deg ` g ) - ( deg ` G ) ) < d ) ) |
| 64 |
60 63
|
orbi12d |
|- ( f = g -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) <-> ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) ) ) |
| 65 |
|
oveq1 |
|- ( f = g -> ( f oF - ( G oF x. q ) ) = ( g oF - ( G oF x. q ) ) ) |
| 66 |
65
|
eqeq1d |
|- ( f = g -> ( ( f oF - ( G oF x. q ) ) = 0p <-> ( g oF - ( G oF x. q ) ) = 0p ) ) |
| 67 |
65
|
fveq2d |
|- ( f = g -> ( deg ` ( f oF - ( G oF x. q ) ) ) = ( deg ` ( g oF - ( G oF x. q ) ) ) ) |
| 68 |
67
|
breq1d |
|- ( f = g -> ( ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) <-> ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
| 69 |
66 68
|
orbi12d |
|- ( f = g -> ( ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
| 70 |
69
|
rexbidv |
|- ( f = g -> ( E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
| 71 |
64 70
|
imbi12d |
|- ( f = g -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 72 |
71
|
cbvralvw |
|- ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
| 73 |
|
simplll |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> ph ) |
| 74 |
73 1
|
sylan |
|- ( ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 75 |
73 2
|
sylan |
|- ( ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 76 |
73 3
|
sylan |
|- ( ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
| 77 |
73 4
|
syl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> -u 1 e. S ) |
| 78 |
|
simplr |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> f e. ( Poly ` S ) ) |
| 79 |
73 6
|
syl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> G e. ( Poly ` S ) ) |
| 80 |
73 7
|
syl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> G =/= 0p ) |
| 81 |
|
simpllr |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> d e. NN0 ) |
| 82 |
|
simprrr |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> ( ( deg ` f ) - ( deg ` G ) ) = d ) |
| 83 |
|
simprrl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> f =/= 0p ) |
| 84 |
|
eqid |
|- ( g oF - ( G oF x. p ) ) = ( g oF - ( G oF x. p ) ) |
| 85 |
|
oveq1 |
|- ( w = z -> ( w ^ d ) = ( z ^ d ) ) |
| 86 |
85
|
oveq2d |
|- ( w = z -> ( ( ( ( coeff ` f ) ` ( deg ` f ) ) / ( ( coeff ` G ) ` ( deg ` G ) ) ) x. ( w ^ d ) ) = ( ( ( ( coeff ` f ) ` ( deg ` f ) ) / ( ( coeff ` G ) ` ( deg ` G ) ) ) x. ( z ^ d ) ) ) |
| 87 |
86
|
cbvmptv |
|- ( w e. CC |-> ( ( ( ( coeff ` f ) ` ( deg ` f ) ) / ( ( coeff ` G ) ` ( deg ` G ) ) ) x. ( w ^ d ) ) ) = ( z e. CC |-> ( ( ( ( coeff ` f ) ` ( deg ` f ) ) / ( ( coeff ` G ) ` ( deg ` G ) ) ) x. ( z ^ d ) ) ) |
| 88 |
|
simprl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
| 89 |
|
oveq2 |
|- ( q = p -> ( G oF x. q ) = ( G oF x. p ) ) |
| 90 |
89
|
oveq2d |
|- ( q = p -> ( g oF - ( G oF x. q ) ) = ( g oF - ( G oF x. p ) ) ) |
| 91 |
90
|
eqeq1d |
|- ( q = p -> ( ( g oF - ( G oF x. q ) ) = 0p <-> ( g oF - ( G oF x. p ) ) = 0p ) ) |
| 92 |
90
|
fveq2d |
|- ( q = p -> ( deg ` ( g oF - ( G oF x. q ) ) ) = ( deg ` ( g oF - ( G oF x. p ) ) ) ) |
| 93 |
92
|
breq1d |
|- ( q = p -> ( ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) <-> ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) |
| 94 |
91 93
|
orbi12d |
|- ( q = p -> ( ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) |
| 95 |
94
|
cbvrexvw |
|- ( E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> E. p e. ( Poly ` S ) ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) |
| 96 |
95
|
imbi2i |
|- ( ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. p e. ( Poly ` S ) ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) |
| 97 |
96
|
ralbii |
|- ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. p e. ( Poly ` S ) ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) |
| 98 |
88 97
|
sylib |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. p e. ( Poly ` S ) ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) |
| 99 |
|
eqid |
|- ( coeff ` f ) = ( coeff ` f ) |
| 100 |
|
eqid |
|- ( coeff ` G ) = ( coeff ` G ) |
| 101 |
|
eqid |
|- ( deg ` f ) = ( deg ` f ) |
| 102 |
|
eqid |
|- ( deg ` G ) = ( deg ` G ) |
| 103 |
74 75 76 77 78 79 80 55 81 82 83 84 87 98 99 100 101 102
|
plydivlem4 |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
| 104 |
103
|
exp32 |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 105 |
104
|
ralrimdva |
|- ( ( ph /\ d e. NN0 ) -> ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 106 |
72 105
|
biimtrid |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 107 |
106
|
ancld |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
| 108 |
|
dgrcl |
|- ( f e. ( Poly ` S ) -> ( deg ` f ) e. NN0 ) |
| 109 |
108
|
adantl |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( deg ` f ) e. NN0 ) |
| 110 |
109
|
nn0zd |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( deg ` f ) e. ZZ ) |
| 111 |
6
|
ad2antrr |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> G e. ( Poly ` S ) ) |
| 112 |
111 12
|
syl |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( deg ` G ) e. NN0 ) |
| 113 |
112
|
nn0zd |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( deg ` G ) e. ZZ ) |
| 114 |
110 113
|
zsubcld |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( deg ` f ) - ( deg ` G ) ) e. ZZ ) |
| 115 |
|
nn0z |
|- ( d e. NN0 -> d e. ZZ ) |
| 116 |
115
|
ad2antlr |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> d e. ZZ ) |
| 117 |
|
zleltp1 |
|- ( ( ( ( deg ` f ) - ( deg ` G ) ) e. ZZ /\ d e. ZZ ) -> ( ( ( deg ` f ) - ( deg ` G ) ) <_ d <-> ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) ) |
| 118 |
114 116 117
|
syl2anc |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( deg ` f ) - ( deg ` G ) ) <_ d <-> ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) ) |
| 119 |
114
|
zred |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( deg ` f ) - ( deg ` G ) ) e. RR ) |
| 120 |
|
nn0re |
|- ( d e. NN0 -> d e. RR ) |
| 121 |
120
|
ad2antlr |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> d e. RR ) |
| 122 |
119 121
|
leloed |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( deg ` f ) - ( deg ` G ) ) <_ d <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
| 123 |
118 122
|
bitr3d |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
| 124 |
123
|
orbi2d |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) <-> ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
| 125 |
|
pm5.63 |
|- ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) <-> ( f = 0p \/ ( -. f = 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
| 126 |
|
df-ne |
|- ( f =/= 0p <-> -. f = 0p ) |
| 127 |
126
|
anbi1i |
|- ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) <-> ( -. f = 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) |
| 128 |
127
|
orbi2i |
|- ( ( f = 0p \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( f = 0p \/ ( -. f = 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
| 129 |
125 128
|
bitr4i |
|- ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) <-> ( f = 0p \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
| 130 |
129
|
orbi2i |
|- ( ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f = 0p \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
| 131 |
|
or12 |
|- ( ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
| 132 |
|
or12 |
|- ( ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f = 0p \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
| 133 |
130 131 132
|
3bitr4i |
|- ( ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
| 134 |
|
orass |
|- ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
| 135 |
133 134
|
bitr4i |
|- ( ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
| 136 |
124 135
|
bitrdi |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
| 137 |
136
|
imbi1d |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 138 |
|
jaob |
|- ( ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 139 |
137 138
|
bitrdi |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
| 140 |
139
|
ralbidva |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. f e. ( Poly ` S ) ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
| 141 |
|
r19.26 |
|- ( A. f e. ( Poly ` S ) ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) <-> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 142 |
140 141
|
bitrdi |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
| 143 |
107 142
|
sylibrd |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 144 |
143
|
expcom |
|- ( d e. NN0 -> ( ph -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
| 145 |
144
|
a2d |
|- ( d e. NN0 -> ( ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) -> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
| 146 |
37 42 47 42 59 145
|
nn0ind |
|- ( d e. NN0 -> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 147 |
32 146
|
syl |
|- ( d e. NN -> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
| 148 |
147
|
impcom |
|- ( ( ph /\ d e. NN ) -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
| 149 |
5
|
adantr |
|- ( ( ph /\ d e. NN ) -> F e. ( Poly ` S ) ) |
| 150 |
31 148 149
|
rspcdva |
|- ( ( ph /\ d e. NN ) -> ( ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
| 151 |
18 150
|
syl5 |
|- ( ( ph /\ d e. NN ) -> ( ( ( deg ` F ) - ( deg ` G ) ) < d -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
| 152 |
151
|
rexlimdva |
|- ( ph -> ( E. d e. NN ( ( deg ` F ) - ( deg ` G ) ) < d -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
| 153 |
17 152
|
mpd |
|- ( ph -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |