Metamath Proof Explorer


Theorem pm10.42

Description: Theorem *10.42 in WhiteheadRussell p. 155. (Contributed by Andrew Salmon, 17-Jun-2011)

Ref Expression
Assertion pm10.42
|- ( ( E. x ph \/ E. x ps ) <-> E. x ( ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 19.43
 |-  ( E. x ( ph \/ ps ) <-> ( E. x ph \/ E. x ps ) )
2 1 bicomi
 |-  ( ( E. x ph \/ E. x ps ) <-> E. x ( ph \/ ps ) )