Metamath Proof Explorer


Theorem pm10.52

Description: Theorem *10.52 in WhiteheadRussell p. 155. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm10.52
|- ( E. x ph -> ( A. x ( ph -> ps ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 19.23v
 |-  ( A. x ( ph -> ps ) <-> ( E. x ph -> ps ) )
2 pm5.5
 |-  ( E. x ph -> ( ( E. x ph -> ps ) <-> ps ) )
3 1 2 syl5bb
 |-  ( E. x ph -> ( A. x ( ph -> ps ) <-> ps ) )