Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993) (Proof shortened by Wolf Lammen, 5-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pm2.01d.1 | |- ( ph -> ( ps -> -. ps ) ) |
|
Assertion | pm2.01d | |- ( ph -> -. ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.01d.1 | |- ( ph -> ( ps -> -. ps ) ) |
|
2 | id | |- ( -. ps -> -. ps ) |
|
3 | 1 2 | pm2.61d1 | |- ( ph -> -. ps ) |