Metamath Proof Explorer


Theorem pm5.31r

Description: Variant of pm5.31 . (Contributed by Rodolfo Medina, 15-Oct-2010)

Ref Expression
Assertion pm5.31r
|- ( ( ch /\ ( ph -> ps ) ) -> ( ph -> ( ch /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( ch -> ( ph -> ch ) )
2 id
 |-  ( ( ph -> ps ) -> ( ph -> ps ) )
3 1 2 anim12ii
 |-  ( ( ch /\ ( ph -> ps ) ) -> ( ph -> ( ch /\ ps ) ) )