Metamath Proof Explorer


Theorem pm5.31r

Description: Variant of pm5.31 . (Contributed by Rodolfo Medina, 15-Oct-2010)

Ref Expression
Assertion pm5.31r ( ( 𝜒 ∧ ( 𝜑𝜓 ) ) → ( 𝜑 → ( 𝜒𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 ax-1 ( 𝜒 → ( 𝜑𝜒 ) )
2 id ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
3 1 2 anim12ii ( ( 𝜒 ∧ ( 𝜑𝜓 ) ) → ( 𝜑 → ( 𝜒𝜓 ) ) )