| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmapfval.b |
|- B = ( Base ` K ) |
| 2 |
|
pmapfval.l |
|- .<_ = ( le ` K ) |
| 3 |
|
pmapfval.a |
|- A = ( Atoms ` K ) |
| 4 |
|
pmapfval.m |
|- M = ( pmap ` K ) |
| 5 |
|
elex |
|- ( K e. C -> K e. _V ) |
| 6 |
|
fveq2 |
|- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
| 7 |
6 1
|
eqtr4di |
|- ( k = K -> ( Base ` k ) = B ) |
| 8 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
| 9 |
8 3
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
| 10 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
| 11 |
10 2
|
eqtr4di |
|- ( k = K -> ( le ` k ) = .<_ ) |
| 12 |
11
|
breqd |
|- ( k = K -> ( a ( le ` k ) x <-> a .<_ x ) ) |
| 13 |
9 12
|
rabeqbidv |
|- ( k = K -> { a e. ( Atoms ` k ) | a ( le ` k ) x } = { a e. A | a .<_ x } ) |
| 14 |
7 13
|
mpteq12dv |
|- ( k = K -> ( x e. ( Base ` k ) |-> { a e. ( Atoms ` k ) | a ( le ` k ) x } ) = ( x e. B |-> { a e. A | a .<_ x } ) ) |
| 15 |
|
df-pmap |
|- pmap = ( k e. _V |-> ( x e. ( Base ` k ) |-> { a e. ( Atoms ` k ) | a ( le ` k ) x } ) ) |
| 16 |
14 15 1
|
mptfvmpt |
|- ( K e. _V -> ( pmap ` K ) = ( x e. B |-> { a e. A | a .<_ x } ) ) |
| 17 |
4 16
|
eqtrid |
|- ( K e. _V -> M = ( x e. B |-> { a e. A | a .<_ x } ) ) |
| 18 |
5 17
|
syl |
|- ( K e. C -> M = ( x e. B |-> { a e. A | a .<_ x } ) ) |