| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntibnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
| 2 |
|
pntibndlem1.1 |
|- ( ph -> A e. RR+ ) |
| 3 |
|
pntibndlem1.l |
|- L = ( ( 1 / 4 ) / ( A + 3 ) ) |
| 4 |
|
pntibndlem3.2 |
|- ( ph -> A. x e. RR+ ( abs ` ( ( R ` x ) / x ) ) <_ A ) |
| 5 |
|
pntibndlem3.3 |
|- ( ph -> B e. RR+ ) |
| 6 |
|
pntibndlem3.k |
|- K = ( exp ` ( B / ( E / 2 ) ) ) |
| 7 |
|
pntibndlem3.c |
|- C = ( ( 2 x. B ) + ( log ` 2 ) ) |
| 8 |
|
pntibndlem3.4 |
|- ( ph -> E e. ( 0 (,) 1 ) ) |
| 9 |
|
pntibndlem3.6 |
|- ( ph -> Z e. RR+ ) |
| 10 |
|
pntibndlem2.10 |
|- ( ph -> N e. NN ) |
| 11 |
10
|
nnred |
|- ( ph -> N e. RR ) |
| 12 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 13 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
| 14 |
1 2 3
|
pntibndlem1 |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
| 15 |
13 14
|
sselid |
|- ( ph -> L e. RR ) |
| 16 |
13 8
|
sselid |
|- ( ph -> E e. RR ) |
| 17 |
15 16
|
remulcld |
|- ( ph -> ( L x. E ) e. RR ) |
| 18 |
12 17
|
readdcld |
|- ( ph -> ( 1 + ( L x. E ) ) e. RR ) |
| 19 |
18 11
|
remulcld |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. N ) e. RR ) |
| 20 |
|
elicc2 |
|- ( ( N e. RR /\ ( ( 1 + ( L x. E ) ) x. N ) e. RR ) -> ( u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) <-> ( u e. RR /\ N <_ u /\ u <_ ( ( 1 + ( L x. E ) ) x. N ) ) ) ) |
| 21 |
11 19 20
|
syl2anc |
|- ( ph -> ( u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) <-> ( u e. RR /\ N <_ u /\ u <_ ( ( 1 + ( L x. E ) ) x. N ) ) ) ) |
| 22 |
21
|
biimpa |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u e. RR /\ N <_ u /\ u <_ ( ( 1 + ( L x. E ) ) x. N ) ) ) |