Description: Lemma for pntibndlem2 . (Contributed by Mario Carneiro, 7-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pntibnd.r | |
|
pntibndlem1.1 | |
||
pntibndlem1.l | |
||
pntibndlem3.2 | |
||
pntibndlem3.3 | |
||
pntibndlem3.k | |
||
pntibndlem3.c | |
||
pntibndlem3.4 | |
||
pntibndlem3.6 | |
||
pntibndlem2.10 | |
||
Assertion | pntibndlem2a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntibnd.r | |
|
2 | pntibndlem1.1 | |
|
3 | pntibndlem1.l | |
|
4 | pntibndlem3.2 | |
|
5 | pntibndlem3.3 | |
|
6 | pntibndlem3.k | |
|
7 | pntibndlem3.c | |
|
8 | pntibndlem3.4 | |
|
9 | pntibndlem3.6 | |
|
10 | pntibndlem2.10 | |
|
11 | 10 | nnred | |
12 | 1red | |
|
13 | ioossre | |
|
14 | 1 2 3 | pntibndlem1 | |
15 | 13 14 | sselid | |
16 | 13 8 | sselid | |
17 | 15 16 | remulcld | |
18 | 12 17 | readdcld | |
19 | 18 11 | remulcld | |
20 | elicc2 | |
|
21 | 11 19 20 | syl2anc | |
22 | 21 | biimpa | |