Metamath Proof Explorer


Theorem pntibndlem2a

Description: Lemma for pntibndlem2 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses pntibnd.r R=a+ψaa
pntibndlem1.1 φA+
pntibndlem1.l L=14A+3
pntibndlem3.2 φx+RxxA
pntibndlem3.3 φB+
pntibndlem3.k K=eBE2
pntibndlem3.c C=2B+log2
pntibndlem3.4 φE01
pntibndlem3.6 φZ+
pntibndlem2.10 φN
Assertion pntibndlem2a φuN1+LE NuNuu1+LE N

Proof

Step Hyp Ref Expression
1 pntibnd.r R=a+ψaa
2 pntibndlem1.1 φA+
3 pntibndlem1.l L=14A+3
4 pntibndlem3.2 φx+RxxA
5 pntibndlem3.3 φB+
6 pntibndlem3.k K=eBE2
7 pntibndlem3.c C=2B+log2
8 pntibndlem3.4 φE01
9 pntibndlem3.6 φZ+
10 pntibndlem2.10 φN
11 10 nnred φN
12 1red φ1
13 ioossre 01
14 1 2 3 pntibndlem1 φL01
15 13 14 sselid φL
16 13 8 sselid φE
17 15 16 remulcld φLE
18 12 17 readdcld φ1+LE
19 18 11 remulcld φ1+LE N
20 elicc2 N1+LE NuN1+LE NuNuu1+LE N
21 11 19 20 syl2anc φuN1+LE NuNuu1+LE N
22 21 biimpa φuN1+LE NuNuu1+LE N