Description: Lemma for pntibnd . (Contributed by Mario Carneiro, 10-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pntibnd.r | |
|
pntibndlem1.1 | |
||
pntibndlem1.l | |
||
Assertion | pntibndlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntibnd.r | |
|
2 | pntibndlem1.1 | |
|
3 | pntibndlem1.l | |
|
4 | 4nn | |
|
5 | nnrp | |
|
6 | rpreccl | |
|
7 | 4 5 6 | mp2b | |
8 | 3rp | |
|
9 | rpaddcl | |
|
10 | 2 8 9 | sylancl | |
11 | rpdivcl | |
|
12 | 7 10 11 | sylancr | |
13 | 3 12 | eqeltrid | |
14 | 13 | rpred | |
15 | 13 | rpgt0d | |
16 | rpcn | |
|
17 | 7 16 | ax-mp | |
18 | 17 | div1i | |
19 | rpre | |
|
20 | 7 19 | mp1i | |
21 | 3re | |
|
22 | 21 | a1i | |
23 | 10 | rpred | |
24 | 1lt4 | |
|
25 | 4re | |
|
26 | 4pos | |
|
27 | recgt1 | |
|
28 | 25 26 27 | mp2an | |
29 | 24 28 | mpbi | |
30 | 1lt3 | |
|
31 | 7 19 | ax-mp | |
32 | 1re | |
|
33 | 31 32 21 | lttri | |
34 | 29 30 33 | mp2an | |
35 | 34 | a1i | |
36 | ltaddrp | |
|
37 | 21 2 36 | sylancr | |
38 | 3cn | |
|
39 | 2 | rpcnd | |
40 | addcom | |
|
41 | 38 39 40 | sylancr | |
42 | 37 41 | breqtrd | |
43 | 20 22 23 35 42 | lttrd | |
44 | 18 43 | eqbrtrid | |
45 | 32 | a1i | |
46 | 0lt1 | |
|
47 | 46 | a1i | |
48 | 10 | rpregt0d | |
49 | ltdiv23 | |
|
50 | 20 45 47 48 49 | syl121anc | |
51 | 44 50 | mpbid | |
52 | 3 51 | eqbrtrid | |
53 | 0xr | |
|
54 | 1xr | |
|
55 | elioo2 | |
|
56 | 53 54 55 | mp2an | |
57 | 14 15 52 56 | syl3anbrc | |