Metamath Proof Explorer


Theorem pntibndlem1

Description: Lemma for pntibnd . (Contributed by Mario Carneiro, 10-Apr-2016)

Ref Expression
Hypotheses pntibnd.r R=a+ψaa
pntibndlem1.1 φA+
pntibndlem1.l L=14A+3
Assertion pntibndlem1 φL01

Proof

Step Hyp Ref Expression
1 pntibnd.r R=a+ψaa
2 pntibndlem1.1 φA+
3 pntibndlem1.l L=14A+3
4 4nn 4
5 nnrp 44+
6 rpreccl 4+14+
7 4 5 6 mp2b 14+
8 3rp 3+
9 rpaddcl A+3+A+3+
10 2 8 9 sylancl φA+3+
11 rpdivcl 14+A+3+14A+3+
12 7 10 11 sylancr φ14A+3+
13 3 12 eqeltrid φL+
14 13 rpred φL
15 13 rpgt0d φ0<L
16 rpcn 14+14
17 7 16 ax-mp 14
18 17 div1i 141=14
19 rpre 14+14
20 7 19 mp1i φ14
21 3re 3
22 21 a1i φ3
23 10 rpred φA+3
24 1lt4 1<4
25 4re 4
26 4pos 0<4
27 recgt1 40<41<414<1
28 25 26 27 mp2an 1<414<1
29 24 28 mpbi 14<1
30 1lt3 1<3
31 7 19 ax-mp 14
32 1re 1
33 31 32 21 lttri 14<11<314<3
34 29 30 33 mp2an 14<3
35 34 a1i φ14<3
36 ltaddrp 3A+3<3+A
37 21 2 36 sylancr φ3<3+A
38 3cn 3
39 2 rpcnd φA
40 addcom 3A3+A=A+3
41 38 39 40 sylancr φ3+A=A+3
42 37 41 breqtrd φ3<A+3
43 20 22 23 35 42 lttrd φ14<A+3
44 18 43 eqbrtrid φ141<A+3
45 32 a1i φ1
46 0lt1 0<1
47 46 a1i φ0<1
48 10 rpregt0d φA+30<A+3
49 ltdiv23 1410<1A+30<A+3141<A+314A+3<1
50 20 45 47 48 49 syl121anc φ141<A+314A+3<1
51 44 50 mpbid φ14A+3<1
52 3 51 eqbrtrid φL<1
53 0xr 0*
54 1xr 1*
55 elioo2 0*1*L01L0<LL<1
56 53 54 55 mp2an L01L0<LL<1
57 14 15 52 56 syl3anbrc φL01